Chapitre 3

Les suites

I. Généralités sur les suites

Définition

Une suite numérique u est une fonction définie sur \mathbb{N} , à valeurs dans \mathbb{R} :

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$

 $n \longmapsto u(n) \text{ ou } u_n$

On note cette suite (u_n) ou $(u_n)_{n\in\mathbb{N}}$ ou plus simplement u.

Remarques:

- L'ensemble des entiers naturels est noté \mathbb{N} .
- Une suite est une liste de nombres qui se poursuit : u_0, u_1, u_2, \dots
- $u_{1,5}$, u_{-2} n'existent pas! En revanche $u_0 = -2, 5$ est tout à fait possible.
- u_{n+1} est le terme qui suit u_n .

1. Modes de génération d'une suite

Une suite peut être définie de deux manières différentes :

Définition

Une suite u est définie de manière explicite lorsque l'on peut exprimer le terme général u_n en fonction de son indice n.

Remarque : On peut calculer directement n'importe quel terme u_n de la suite en remplaçant n par la valeur souhaitée.

Définition

Une suite u est définie par récurrence quand elle est définie par la donnée :

- de son terme initial, généralement u_0 ;
- d'une relation qui permet de calculer à partir de chaque terme le terme suivant. Cette relation est appelée **relation de récurrence**.

Remarque: Pour ce type de suite, on ne peut pas calculer directement n'importe quel terme.

En effet, pour déterminer u_4 , on a besoin de u_3 et pour déterminer u_3 , on a besoin de u_2 , et ainsi de suite de proche en proche.

2. Représentation graphique

Définition

Dans un repère (O ; \vec{i} , \vec{j}), la représentation graphique d'une suite u est l'ensemble des points M_n de coordonnées $(n; u_n)$.

Remarque : Contrairement à une fonction, la représentation graphique d'une suite n'est pas une courbe mais un nuage de points.

II. Sens de variation d'une suite

Définition

- Une suite u est croissante si pour tout entier naturel $n: u_n \leq u_{n+1}$;
- Une suite u est décroissante si pour tout entier naturel $n: u_n \geqslant u_{n+1}$;
- Une suite u est constante si pour tout entier naturel $n: u_{n+1} = u_n$;
- \bullet Une suite u est monotone si elle est croissante ou décroissante.

Remarque: Toutes les suites ne sont pas croissantes ou décroissantes.

Par exemple, la suite (u_n) définie par $u_n = (-1)^n$.

Méthode

Dans la pratique, pour étudier le sens de variation d'une suite u, on étudie le signe de la différence $u_{n+1} - u_n$.

III. Suites arithmétiques et géométriques

1. Suites arithmétiques

Définition

Une suite est dite **arithmétique** lorsque chaque terme se déduit du précédent en lui ajoutant un nombre réel constant r, appelé raison de la suite. Ainsi, pour tout $n \in \mathbb{N}$: $u_{n+1} = u_n + r$

Propriété

Une suite est arithmétique si et seulement sa représentation graphique est un nuage de points alignés. On parle alors de croissance linéaire.

Méthode

Pour prouver qu'une suite u est arithmétique, on montre que, pour tout $n \in \mathbb{N}$, la différence $u_{n+1} - u_n$ est une constante, c'est-à-dire indépendante de l'entier n.

Propriété

Soit u une suite arithmétique de raison r.

Si r > 0, u est croissante ; si r < 0, u est décroissante ; si r = 0, u est constante.

2. Suites géométriques

Définition

Une suite est dite **géométrique** lorsque chaque terme se déduit du précédent en le multipliant par un nombre réel constant q, appelé raison de la suite. Ainsi, pour tout $n \in \mathbb{N}$: $v_{n+1}q \times v_n$.

Méthode

Pour prouver qu'une suite v est géométrique, on montre que, pour tout $n \in \mathbb{N}$, la quotient $\frac{v_{n+1}}{v_n}$ est une constante, c'est-à-dire indépendante de l'entier n.

Propriété

Soit v une suite géométrique de raison q telle que $v_0>0$:

- Si q > 1, v est croissante ; si 0 < q < 1, v est décroissante ; si q = 1, v est constante.
- ullet Le nuage de points représentant la suite v suit une croissance exponentielle.