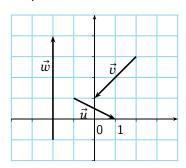
1 Rappels sur les vecteurs

Exercice 1 -

Lire graphiquement les coordonnées des vecteurs \vec{u} , \vec{v} et \vec{w} dans le repère ci-dessous.



Exercice 2

Dans un repère, on considère les vecteurs $\vec{u}igg(egin{array}{c} 5 \\ -0,5 \end{array}igg)$

et
$$\vec{v}$$
 $\begin{pmatrix} -10,5\\ 3 \end{pmatrix}$ et les points $A(-1; 2)$, $B(6; 0)$ et $C(5; -3)$.

- 1) Déterminer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{BC} , $-3\overrightarrow{AB}$ et $\overrightarrow{AB}-2\overrightarrow{u}$
- 2) Démontrer que \vec{v} et \overrightarrow{AB} sont colinéaires.

Exercice 3

À l'aide de la relation de Chasles, simplifier les expressions suivantes :

1)
$$\overrightarrow{AB} - \overrightarrow{AC} + \overrightarrow{BC}$$

2)
$$\overrightarrow{AB} + 2\overrightarrow{BD} - \overrightarrow{CA} + \overrightarrow{CB}$$

Exercice 4

Les vecteurs suivants sont-ils colinéaires?

1)
$$\vec{u} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -6 \\ 2 \end{pmatrix}$

2)
$$\vec{u} \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 0 \\ -1 \end{pmatrix}$

3)
$$\vec{u} \begin{pmatrix} -14 \\ 28 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -8 \\ 12 \end{pmatrix}$

Exercice 5

Déterminer si les droites (AB) et (CD) sont parallèles.

1)
$$A(3; -2)$$
, $B(-1; -1)$, $C(-3; 2)$ et $D(1; 3)$

2)
$$A(-9; -2)$$
, $B(1; 3)$, $C(3; -2)$ et $D(1; -3)$

Exercice 6

Dans chacun des cas suivants, déterminer si les points A, B et C sont alignés.

1)
$$A(-9; 4), B(1; -1)$$
 et $C(4; -2)$

2)
$$A(-4; 0)$$
, $B(-2; 1)$ et $C(3; \frac{7}{2})$

3)
$$A(-4; 4)$$
, $B(-4; 6)$ et $C(-3; 2)$

Exercice 7

On considère deux points A et B dans le plan et le point R tel que :

$$2\overrightarrow{AR} = 2\overrightarrow{RB} + \overrightarrow{AB}$$
.

- 1) Exprimer le vecteur \overrightarrow{AR} en fonction de \overrightarrow{AB} .
- 2) Que peut-on en déduire concernant les points A, B et R?

Exercice 8

On considère un triangle quelconque ABC.

- 1) Faire une figure.
- 2) On considère le point M tel que :

$$\overrightarrow{AM} - \overrightarrow{BM} + 2\overrightarrow{MC} = \overrightarrow{AB} + \overrightarrow{AC}$$

- a) En utilisant la relation de Chasles, exprimer le vecteur \overrightarrow{AM} à l'aide de vecteurs formés des points A, B et C uniquement.
- b) Que peut-on dire des points A, C et M?
- c) Placer le point M sur la figure.

Exercice 9

On considère un triangle EFG.

1) Faire une figure et y placer le point H tel que :

$$\overrightarrow{EH} = \frac{2}{3}\overrightarrow{EG} + \frac{1}{3}\overrightarrow{EF}.$$

- 2) En écrivant que $\overrightarrow{FH} = \overrightarrow{FE} + \overrightarrow{EH}$, démontrer que \overrightarrow{FH} et \overrightarrow{FG} sont colinéaires.
- 3) Que peut-on en déduire concernant le point H?

Exercice 10 -

ABCD est un parallélogramme, F est le point tel que $\overrightarrow{AF} = \frac{3}{2}\overrightarrow{AB}$ et E le point tel que $\overrightarrow{DE} = -\frac{1}{2}\overrightarrow{DA}$.

- 1) Montrer que $\overrightarrow{EF} = \frac{3}{2}\overrightarrow{AB} \frac{3}{2}\overrightarrow{AD}$.
- 2) Décomposer le vecteur \overrightarrow{BD} selon \overrightarrow{AB} et \overrightarrow{AD} .
- 3) Démontrer que (EF) et (BD) sont parallèles.

Exercice 11

On considère un triangle ABC et les points D et E tels que $\overrightarrow{AD} = 4\overrightarrow{AB} + \overrightarrow{AC}$ et $\overrightarrow{BE} = \frac{1}{5}\overrightarrow{BC}$. En utilisant une décomposition adaptée, montrer que les points A, E et D sont alignés.

Exercice 12

On considère trois points F, G et H du plan et les points I et J tels que $\overrightarrow{FI} = \overrightarrow{FG} + 3\overrightarrow{FH}$ et $\overrightarrow{HJ} = \frac{1}{3}\overrightarrow{FG}$. En utilisant une décomposition adaptée, montrer que les points F, J et I sont alignés.

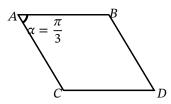
2 Définition et propriétés

Exercice 13

Soit ABDC un parallélogramme tel que AB=8 et AC=10 et $\widehat{BAC}=\frac{\pi}{3}$.

Calculer:

- 1) $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- 2) $\overrightarrow{AB} \cdot \overrightarrow{CD}$.
- 3) $\overrightarrow{DB} \cdot \overrightarrow{CD}$.



Exercice 14

On considère trois points A, B et C du plan tels que AB=3 cm, AC=5 cm et BC=6 cm.

- 1) Faire une figure.
- 2) Exprimer $\overrightarrow{AB} \cdot \overrightarrow{BC}$ en fonction de AB, BC et AC.
- 3) En déduire $\overrightarrow{AB} \cdot \overrightarrow{BC}$.

Sésamath

Sésamath

Exercice 15

On considère trois points E, F et G du plan tels que $EF=8,\ EG=6$ et FG=11. Calculer :

- 1) $\overrightarrow{EF} \cdot \overrightarrow{FG}$
- 2) $\overrightarrow{FG} \cdot \overrightarrow{GE}$
- 3) \overrightarrow{GF} , \overrightarrow{FF}

Exercice 16

On considère les vecteurs $\vec{a} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$ et $\vec{b} \begin{pmatrix} -3 \\ 5 \end{pmatrix}$.

- 1) Calculer $\|\vec{a}\|$, $\|\vec{b}\|$ et $\|\vec{a} + \vec{b}\|$.
- 2) En déduire $\vec{a} \cdot \vec{b}$.

Sésamath

Exercice 17 -

Calculer les produits scalaires suivants :

1)
$$\vec{u} \cdot \vec{v}$$
 avec $\vec{u} \begin{pmatrix} 15 \\ -8 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 6 \\ 9 \end{pmatrix}$

2)
$$\vec{s} \cdot \vec{t}$$
 avec $\vec{s} \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ et $\vec{t} \begin{pmatrix} -3 \\ -4 \end{pmatrix}$

3)
$$\vec{a} \cdot \vec{b}$$
 avec $\vec{a} \begin{pmatrix} \sqrt{3} - 2 \\ 6 \end{pmatrix}$ et $\vec{b} \begin{pmatrix} \sqrt{3} + 2 \\ 1 \end{pmatrix}$

4)
$$\vec{r} \cdot \overrightarrow{AB}$$
 avec $\vec{r} \begin{pmatrix} 3 \\ 7 \end{pmatrix}$, $A(-1; 2)$ et $B(-3; 6)$

- 5) $\overrightarrow{CD} \cdot \overrightarrow{MR}$ avec C(5; 6), D(-1; 4), M(3; 7) et R(8: 9)
- 6) $\overrightarrow{ST} \cdot \overrightarrow{EF}$ avec E(0; 1), F(3; 0), S(8; 8) et T(5; 5)

Sécamath

Exercice 18 -

On considère les vecteurs $\vec{u}\begin{pmatrix} -1\\ 5 \end{pmatrix}$ et $\vec{v}\begin{pmatrix} 2\\ 4 \end{pmatrix}$.

Calculer:

- 1) $\vec{u} \cdot \vec{v}$
- 2) $(2\vec{u}) \cdot \vec{v}$
- 3) $(-\vec{u}) \cdot (3\vec{v})$

Sácamath.

Exercice 19

On considère le carré ABCD cidessous de côté 1 et $I,\,J,\,K$ et L les milieux des côtés.

Associer chacun des produits scalaires avec le calcul ou le résultat auquel il est égal.

- $\overrightarrow{BC} \cdot \overrightarrow{BL}$
- $-IB \times IA$
- $\blacksquare \overrightarrow{IB} \cdot \overrightarrow{ID}$
- AB × AI
- $\vec{KJ} \cdot \vec{KL}$
- $BC \times BJ$
- $\overrightarrow{AB} \cdot \overrightarrow{LK}$
- **•** 0

Sésamath

Exercice 20

On considère le carré ABCD cidessous de côté 1 et $I,\,J,\,K$ et L les milieux des côtés.

- 1) Justifier que $(A; \overrightarrow{AB}, \overrightarrow{AD})$ est un repère orthonormé et donner les coordonnées des points de la figure dans ce repère.
- 2) En déduire :
 - a) $\overrightarrow{AB} \cdot \overrightarrow{AJ}$
- c) $\overrightarrow{KJ} \cdot \overrightarrow{DL}$
- b) $\overrightarrow{AJ} \cdot \overrightarrow{JD}$
- d) $\overrightarrow{DK} \cdot \overrightarrow{JA}$

Exercice 21

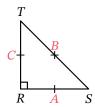
On considère le rectangle EFGH cidessous, tel que EF = 4 et EH = 7, et les points I, J, K et L, milieux respectifs des côtés [EF], [FG], [GH]et [EH]. En choisissant un repère orthonormé adapté, calculer :

Sésamath

- 1) $\overrightarrow{EG} \cdot \overrightarrow{FH}$
- 4) $\overrightarrow{HF} \cdot \overrightarrow{EK}$
- 2) $\overrightarrow{JL} \cdot \overrightarrow{EG}$
- 5) $\overrightarrow{IL} \cdot \overrightarrow{IG}$
- 3) $\overrightarrow{EF} \cdot \overrightarrow{GH}$
- 6) $\overrightarrow{HJ} \cdot \overrightarrow{JK}$

Exercice 22

On considère le triangle isocèle et rectangle RST cidessous, tel que RS = RT = 4, et les points A, B et C, milieux respectifs des côtés [RS], [ST] et [RT].



En choisissant un repère orthonormé adapté, calculer :

- 1) $\overrightarrow{RT} \cdot \overrightarrow{AC}$
- 3) $\overrightarrow{CS} \cdot \overrightarrow{SA}$
- 2) $\overrightarrow{ST} \cdot \overrightarrow{RS}$
- 4) $\overrightarrow{SB} \cdot \overrightarrow{CB}$

Exercice 23

Calculer $\vec{u} \cdot \vec{v}$ avec :

1)
$$\|\vec{u}\| = 5$$
, $\|\vec{v}\| = 6$ et $\|\vec{u} + \vec{v}\| = 10$

2)
$$\|\vec{u}\| = 3\sqrt{5} \text{ et } \vec{v} = \vec{u}$$

3)
$$\vec{u} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 6 \\ 12 \end{pmatrix}$

4)
$$\|\vec{u}\| = 8 \text{ et } \vec{v} = -2\vec{u}$$

Exercice 24

On considère les vecteurs $\vec{u} \begin{pmatrix} 6 \\ 7 \end{pmatrix}$, $\vec{v} \begin{pmatrix} x \\ 1 \end{pmatrix}$ $\vec{w} \begin{pmatrix} -\sqrt{3} \\ v \end{pmatrix}$ avec x et y réels.

- 1) Déterminer x tel que $\vec{u} \cdot \vec{v} = 11$.
- 2) Déterminer y tel que $\vec{u} \cdot \vec{w} = \sqrt{12}$.

Exercice 25

D'après le cours, si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$, alors $\vec{u} \cdot \vec{v} = 0$. La réciproque de cette propriété est-elle vraie? Justifier.

Sésamath

Exercice 26

On considère les vecteurs $\vec{u}\begin{pmatrix} x \\ 2x \end{pmatrix}$ et $\vec{v}\begin{pmatrix} x \\ 3 \end{pmatrix}$ avec

Déterminer, si elle(s) existe(nt), pour quelle(s) valeur(s) de x, on a :

- 1) $\vec{u} \cdot \vec{v} = -9$
- 3) $\vec{u} \cdot \vec{v} = 2$
- 2) $\vec{u} \cdot \vec{v} = -10$
- 4) $\vec{u} \cdot \vec{v} > 7$

Sésamath

Propriétés algébriques

Exercice 27 -

On considère trois points A, B et C du plan tels que AB = 2, AC = 6 et BC = 7.

- 1) a) Justifier que $\overrightarrow{AB} \cdot \overrightarrow{AC} = -(\overrightarrow{BA} \cdot \overrightarrow{AC})$.
 - b) En déduire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- 2) En utilisant la méthode précédente, calculer :
 - a) $\overrightarrow{BA} \cdot \overrightarrow{BC}$
- b) $\overrightarrow{CB} \cdot \overrightarrow{CA}$

Sésamath

Exercice 28

Développer puis exprimer les produits scalaires suivants en fonction de $\vec{u}\cdot\vec{v}$, $\|\vec{u}\|$ et $\|\vec{v}\|$.

- 1) $(3\vec{u} + 2\vec{v}) \cdot (5\vec{u} + 4\vec{v})$
- 2) $(5\vec{u} 4\vec{v}) \cdot (\vec{u} + \vec{v})$
- 3) $(-3\vec{u} + 6\vec{v}) \cdot (-\vec{u} 5\vec{v})$
- 4) $(-\vec{u} 5\vec{v}) \cdot (3\vec{u} 6\vec{v})$

Sésamath

Exercice 29

On sait que cinq points du plan A, B, C, D et Evérifient :

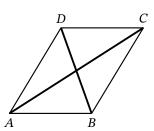
- $\overrightarrow{AB} \cdot \overrightarrow{AE} = 2$
- $\overrightarrow{AB} \cdot \overrightarrow{ED} = -4$
- $\overrightarrow{AB} \cdot \overrightarrow{AC} = 5$

Déterminer $\overrightarrow{AB} \cdot \overrightarrow{CD}$.

Exercice 30 : Identité de polarisation

L'égalité $\vec{u} \cdot \vec{v} = \frac{1}{4} \left(\left\| \vec{u} + \vec{v} \right\|^2 - \left\| \vec{u} - \vec{v} \right\|^2 \right)$ est appelée identité de polarisation.

On considère parallélogramme dont ABCDdiagonales ont pour longueur AC = 7 et BD = 4.



1) En utilisant l'identité de polarisation, justifier que :

$$\overrightarrow{AB} \cdot \overrightarrow{BC} = \frac{1}{4} \left(AC^2 - \left\| \overrightarrow{AB} + \overrightarrow{CB} \right\|^2 \right).$$

2) En déduire $\overrightarrow{AB} \cdot \overrightarrow{BC}$.

4 Orthogonalité

Exercice 31 -

On considère les points A(1; 3), B(3; 1), C(-2; -2), D(13; -5) et E(4; 3).

- 1) Les droites (AC) et (AB) sont-elles perpendiculaires?
- 2) Même question pour : (AC) et (BD).

Sésamath

Exercice 32 -

On considère quatre points J(6 ; 1), K(2 ; 4), L(1; -5) et $M\left(-\frac{5}{2}; -2\right)$.

- 1) Le triangle JKL est-il rectangle en J?
- 2) Le triangle *JKM* est-il rectangle?

Sésamath

Exercice 33

On considère trois points $A(\sqrt{6}; \sqrt{7})$, $B(\sqrt{2}; \sqrt{3})$ et $C(-\sqrt{6}; \sqrt{7} + 2\sqrt{3})$.

Montrer que ABC est rectangle en B.

Sésamath

Exercice 34 -

On considère quatre points Q(2; -2), R(1; 1), S(4; 2) et T(5; -1).

Déterminer la nature du quadrilatère QRST.

Sésamath

Exercice 35 -

On considère trois points A(5,2 ; 4), B(6 ; 3,1) et C(1 ; y).

Déterminer y tel que ABC soit rectangle en A.

Sésamath

Exercice 36 -

Associer chacune des égalités vectorielles suivantes :

- $\overrightarrow{BC} \cdot \overrightarrow{AM} = 0$
- $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$
- $\overrightarrow{AM} = k\overrightarrow{AB}$ où k décrit \mathbb{R}_+
- $\overrightarrow{AB} \cdot \overrightarrow{CM} = 0$

à l'ensemble des points M qui lui correspond :

- la demi-droite [AB)
- la hauteur issue de C dans ABC
- le cercle de diamètre [AB]
- la perpendiculaire à [BC] passant par A

Sésamath

Exercice 37 —

Déterminer, si possible, la ou les valeurs de m pour lesquelles les vecteurs \vec{u} et \vec{v} sont orthogonaux.

1)
$$\vec{u} \begin{pmatrix} m \\ 2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -4 \\ m \end{pmatrix}$

2)
$$\vec{u} \begin{pmatrix} m \\ 4 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 2m \\ 6 \end{pmatrix}$

Sésamath

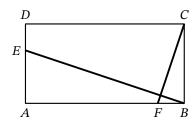
3)
$$\vec{u} \begin{pmatrix} m^2 \\ 2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 3 \\ m-4 \end{pmatrix}$

4)
$$\vec{u} \begin{pmatrix} m \\ m^2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -1 \\ m \end{pmatrix}$

5)
$$\vec{u} \left(\begin{array}{c} \frac{1}{m} \\ 2 \end{array} \right)$$
 et $\vec{v} \left(\begin{array}{c} 4 \\ m \end{array} \right)$

Exercice 38

On considère le rectangle ABCD ci-dessous tel que AB = 6 et AD = 3, $E \in [AD]$ avec AE = 2 et $F \in [AB]$ avec AF = 5.



Montrer que les droites (FC) et (BE) sont perpendiculaires.

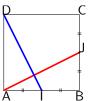
Sésamath

Exercice 39 -

Soit ABCD un carré de côté 2.

Les points I est J sont les milieux respectifs des segments [AB] et [BC].

Montrer ques les droites (AJ) et (ID) sont perpendiculaires.



Sésamath

5 Produit scalaire et angles

Exercice 40 -

On considère un triangle ABC avec AB=5 et BC=6 et $\widehat{ABC}=60^{\circ}$.

- 1) Faire une figure.
- 2) Calculer $\overrightarrow{BA} \cdot \overrightarrow{BC}$.
- 3) Calculer $\overrightarrow{CA} \cdot \overrightarrow{CB}$.

On remarquera d'abord que $\overrightarrow{CA} = \overrightarrow{CB} + \overrightarrow{BA}$.

Sésamath •

Exercice 41 -

On considère trois points R(-1; -2), S(5; -4) et T(3; 6).

- 1) a) Calculer $\overrightarrow{RS} \cdot \overrightarrow{RT}$, RS et RT.
 - b) En déduire $\cos\left(\widehat{SRT}\right)$ puis une mesure de \widehat{SRT} , arrondie à 0,01 degré près.

Sácamath

- 2) Déterminer de même une mesure de \widehat{RST} .
- 3) En déduire \widehat{STR} .

Exercice 42

On considère un triangle OMN tel que OM=5, ON=8 et $\widehat{MON}=\frac{\pi}{4}$ radians.

Déterminer MN (on pourra d'abord calculer \overrightarrow{MN}^2 en utilisant la relation de Chasles).

Sésamath

Exercice 43

On considère trois points I, J et K du plan tels que IJ=4, IK=5 et JK=8.

- 1) Faire une figure.
- 2) Montrer que $\vec{IJ} \cdot \vec{IK} = -\vec{KI} \cdot \vec{IJ}$.
- 3) En déduire $\overrightarrow{IJ} \cdot \overrightarrow{IK}$.
- 4) En déduire une mesure de l'angle \widehat{JIK} , arrondi à 0,1 près.

Sésamath

Exercice 44

On considère trois points A, B et C du plan tels que AB = 7, BC = 8 et AC = 12.

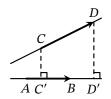
- 1) a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
 - b) En déduire une mesure de \widehat{A} , arrondi à 0,1 près.
- 2) Déterminer \widehat{B} puis \widehat{C} .

Sésamath

6 Produit scalaire et projection

Exercice 45

Soit C et D deux points distincts, extérieurs à une droite (AB) et C' et D' les projetés orthogonaux respectifs de C et D sur (AB).



1) Montrer l'égalité vectorielle :

 $\overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{CC'} + \overrightarrow{AB} \cdot \overrightarrow{C'D'} + \overrightarrow{AB} \cdot \overrightarrow{D'D}.$

2) En déduire que $\overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{C'D'}$.

Sésamath

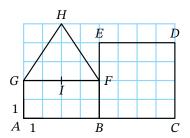
Exercice 46 -

On considère trois points $A(-1 \ ; \ 1)$, $B(2 \ ; \ 2)$ et $C(0 \ ; \ 7)$ et B', le pied de la hauteur issue de B dans ABC

- 1) Exprimer $\overrightarrow{CA} \cdot \overrightarrow{CB}$ en fonction de CB'.
- 2) En déduire CB' puis BB'.
- 3) Calculer l'aire de ABC.

Sésamath

Exercice 47



En utilisant des projections, calculer les produits scalaires suivants :

- 1) $\overrightarrow{AB} \cdot \overrightarrow{AD}$
- 4) $\overrightarrow{CD} \cdot \overrightarrow{FH}$
- 2) $\overrightarrow{BC} \cdot \overrightarrow{BI}$
- 5) $\overrightarrow{HG} \cdot \overrightarrow{BC}$
- 3) $\overrightarrow{BH} \cdot \overrightarrow{CA}$
- 6) $\overrightarrow{GI} \cdot \overrightarrow{FD}$

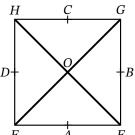
Sésamath

7 Choisir la bonne formule

Exercice 48

On considère le carré EFGH de côté a ci-dessous. Dans ce carré, A est le milieu de [EF], B le milieu de [FG], C le milieu de [GH], D le milieu de [HE] et O est le centre de EFGH.

En utilisant la méthode de votre choix, exprimer les produits D-scalaires suivants en fonction de a:



- 1) $\overrightarrow{HO} \cdot \overrightarrow{HF}$
- 4) $\overrightarrow{EO} \cdot \overrightarrow{FE}$
- 7) $\overrightarrow{OE} \cdot \overrightarrow{OB}$

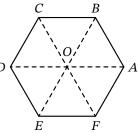
- 2) $\overrightarrow{EF} \cdot \overrightarrow{EB}$
- 5) $\overrightarrow{OG} \cdot \overrightarrow{FH}$
- 8) $\overrightarrow{CD} \cdot \overrightarrow{CO}$

- 3) $\overrightarrow{CH} \cdot \overrightarrow{GE}$
- 6) $\overrightarrow{CD} \cdot \overrightarrow{CA}$
- 9) $\overrightarrow{EB} \cdot \overrightarrow{EG}$

Exercice 49

On considère l'hexagone régulier ABCDEF de centre O et de côté 1 ci-dessous.

En utilisant la méthode de votre choix, calculer les produits scalaires suivants :



- 1) $\overrightarrow{OC} \cdot \overrightarrow{FO}$
- 4) $\overrightarrow{CB} \cdot \overrightarrow{FA}$
- 7) $\overrightarrow{EB} \cdot \overrightarrow{DF}$

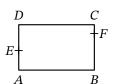
- 2) $\overrightarrow{OA} \cdot \overrightarrow{OB}$
- 5) $\overrightarrow{OF} \cdot \overrightarrow{OD}$
- 8) $\overrightarrow{CE} \cdot \overrightarrow{CA}$

- 3) $\overrightarrow{OA} \cdot \overrightarrow{OF}$
- 6) $\overrightarrow{CE} \cdot \overrightarrow{FB}$
- 9) $\overrightarrow{BE} \cdot \overrightarrow{CO}$

Exercice 50

On considère un rectangle ABCD avec AB = 5 et AD = 3, E un point quelconque de [AD] et F un point quelconque de [BC].

- 1) Calculer $\overrightarrow{AB} \cdot \overrightarrow{EF}$.
- 2) Soit G un point de [CD].
 - a) Exprimer $\overrightarrow{AB} \cdot \overrightarrow{EG}$ en fonction de DG.
 - b) Exprimer $\overrightarrow{AD} \cdot \overrightarrow{GF}$ en fonction de BF.



D

Sésamath

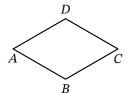
C

Exercice 51 -

1) ABCD est un parallélogramme avec AB = 4, AD = 3 et AC = 6.

Calculer $\overrightarrow{AC} \cdot \overrightarrow{DA}$.

2) ABCD est un losange de côté 4 et vérifiant $\widehat{BAD} = 60^{\circ}$.

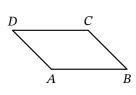


Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

 ABCD est un carré de côté 1 et I est le milieu de [DC] et J celui de [AD].

4) ABCD est un parallélogramme avec AB = 5 et BD = 8 et $\widehat{ABD} = 20^{\circ}$.

Calculer $\overrightarrow{BA} \cdot \overrightarrow{BD}$. Arrondir à 0,1 près.

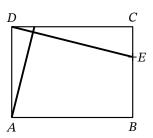


Sésamath

8 Problèmes et approfondissement

Exercice 52

On considère le rectangle ABCD tel que AB = 4 et AD = 3 ci-dessous avec $E \in [CB]$ tel que EC = 1.



On cherche à déterminer où placer le point F de [CD] tel que (DE) et (AF) soient perpendiculaires.

Pour cela, nous allons utiliser deux méthodes, l'une analytique, l'autre géométrique.

Méthode analytique

- 1) Donner les coordonnées de A, D et E dans le repère $\left(A \; ; \; \frac{1}{4} \overrightarrow{AB}, \frac{1}{3} \overrightarrow{AD}\right)$.
- 2) a) Soit F(x; y).

Donner une condition sur y pour que F appartiennent bien à (CD).

- b) Justifier que (DE) \perp (AF) \Leftrightarrow $\begin{cases} y = 3 \\ 4x 3 = 0 \end{cases}$
- c) En déduire où placer F sur [CD] pour que (DE) et (AF) soient perpendiculaires.

Méthode géométrique

- 1) Montrer que $(\overrightarrow{DC} + \overrightarrow{CE}) \cdot (\overrightarrow{AD} + \overrightarrow{DF}) = 4DF 3$.
- 2) En déduire que le point F de [CD] tel que (DE) et (AF) soient perpendiculaires vérifie $DF = \frac{3}{4}$.

Sésamath

Exercice 53

On considère trois points A(1; 0), B(4; 1) et C(2; 5).

- 1) Faire une figure.
- 2) Montrer que $\cos(\widehat{ABC}) = \frac{\sqrt{2}}{10}$
- 3) En déduire que $\sin(\widehat{ABC}) = \frac{7\sqrt{2}}{10}$.
- 4) Tracer C' le pied de la hauteur issue de C sur (AB) et montrer que $CC'=\frac{7\sqrt{10}}{5}$.
- 5) En déduire l'aire de ABC.
- 6) a) Tracer le rectangle de sommets les points de coordonnées (1; 0), (4; 0), (4; 5) et (1; 5).
 - b) Retrouver la réponse à la question précédente.

(Correction)

Corrigé de l'exercice 1

1)
$$\vec{u} \begin{pmatrix} 2 \\ -1 \end{pmatrix}; \vec{v} \begin{pmatrix} -2 \\ -2 \end{pmatrix}; \vec{w} \begin{pmatrix} 0 \\ 5 \end{pmatrix}$$

$$2) \vec{u} + \vec{v} + \vec{w} \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

Corrigé de l'exercice 2

1)
$$\overrightarrow{AB}\begin{pmatrix} 7 \\ -2 \end{pmatrix}$$
; $\overrightarrow{AC}\begin{pmatrix} 6 \\ -5 \end{pmatrix}$ et $\overrightarrow{BC}\begin{pmatrix} -1 \\ -3 \end{pmatrix}$

2)
$$-3\overrightarrow{AB}\begin{pmatrix} -21\\ 6 \end{pmatrix}$$
 et $\overrightarrow{AB} - 2\overrightarrow{u}\begin{pmatrix} -3\\ -1 \end{pmatrix}$

3)
$$-\frac{3}{2}\overrightarrow{AB} = \overrightarrow{v}$$
 donc \overrightarrow{AB} et \overrightarrow{v} sont colinéaires

Corrigé de l'exercice 3

- 1) $\vec{0}$
- 2) $2\overrightarrow{AD}$

Corrigé de l'exercice 4

- 1) Oui
- 2) Oui
- 3) Non

Corrigé de l'exercice 5

- 1) (AB) et (CD) ne sont pas parallèles.
- 2) (AB) et (CD) sont parallèles.

Corrigé de l'exercice 6

- 1) A, B et C ne sont pas alignés.
- 2) A, B et C sont alignés.
- 3) A, B et C ne sont pas alignés.

Corrigé de l'exercice 7

- 1) $\overrightarrow{AR} = \frac{3}{4}\overrightarrow{AB}$.
- 2) Ils sont alignés mais il faut le justifier.

Corrigé de l'exercice 8

- 1) Faites-là!
- 2) a) $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AC}$
 - b) Ils sont alignés mais il faut le justifier.
 - c) La figure doit être cohérente avec la réponse précédente.

Corrigé de l'exercice 9

- 1) Faites-là!
- 2) On montre que $\overrightarrow{FH} = \frac{2}{3}\overrightarrow{FG}$ ce qui prouve la colinéarité des vecteurs \overrightarrow{FH} et \overrightarrow{FG} .
- 3) Le point H est sur la droite (FG).

Corrigé de l'exercice 10

- 1) On peut partir de $\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$.
- 2) $\overrightarrow{BD} = -\overrightarrow{AB} + \overrightarrow{AD}$.
- 3) En utilisant les deux égalités vectorielles précédentes, exprimez le vecteur \overrightarrow{EF} en fonction du vecteur \overrightarrow{BD} .

Corrigé de l'exercice 11

Il faut montrer que les vecteurs (par exemple) \overrightarrow{AD} et \overrightarrow{AE} sont colinéaires.

Corrigé de l'exercice 12

Il faut montrer que les vecteurs (par exemple) \overrightarrow{FI} et \overrightarrow{FJ} sont colinéaires.

Corrigé de l'exercice 13

- 1) $\overrightarrow{AB} \cdot \overrightarrow{AC} = 40$.
- 2) $\overrightarrow{AB} \cdot \overrightarrow{CD} = 64$.
- 3) $\overrightarrow{DB} \cdot \overrightarrow{CD} = -40$.

Corrigé de l'exercice 14

- 1) Faites-là.
- 2) $\vec{AB} \cdot \vec{BC} = \frac{1}{2}(AC^2 AB^2 BC^2).$
- 3) $\overrightarrow{AB} \cdot \overrightarrow{BC} = -10$

Corrigé de l'exercice 15

- 1) $\overrightarrow{EF} \cdot \overrightarrow{FG} = -74, 5$
- 2) $\overrightarrow{FG} \cdot \overrightarrow{GE} = -46.5$
- 3) $\overrightarrow{GF} \cdot \overrightarrow{FE} = -74.5$

Corrigé de l'exercice 16

- 1) $\|\vec{a}\| = \sqrt{40}$, $\|\vec{b}\| = \sqrt{34}$ et $\|\vec{a} + \vec{b}\| = \sqrt{122}$.
- 2) $\vec{a} \cdot \vec{b} = 24$.

Corrigé de l'exercice 17

- 1) $\vec{u} \cdot \vec{v} = 18$
- $2) \vec{s} \cdot \vec{t} = 11$
- 3) $\vec{a} \cdot \vec{b} = 5$
- 4) $\vec{r} \cdot \overrightarrow{AB} = 22$
- 5) $\overrightarrow{CD} \cdot \overrightarrow{MR} 34$
- 6) $\overrightarrow{ST} \cdot \overrightarrow{EF} = -6$

Corrigé de l'exercice 18

- 1) $\vec{u} \cdot \vec{v} = 18$
- 2) $(2\vec{u}) \cdot \vec{v} = 36$ 3) $(-\vec{u}) \cdot (3\vec{v}) =$

Corrigé de l'exercice 19

Corrigé de l'exercice 20

1) Le repère $(A; \overrightarrow{AB}, \overrightarrow{AD})$ convient.

Dans ce repère A(0; 0), B(1; 0), C(1; 1), D(0; 1), $I\left(\frac{1}{2}; 0\right), J\left(1; \frac{1}{2}\right), K\left(\frac{1}{2}; 1\right) \text{ et } L\left(0; \frac{1}{2}\right).$

- 2) a) 1
 - b) $-\frac{3}{4}$ c) $\frac{1}{4}$

Corrigé de l'exercice 21

Corrigé de l'exercice 22

Repère $(R; \frac{1}{4}\overrightarrow{RS}, \frac{1}{4}\overrightarrow{RT})$.

- 3) $\overrightarrow{CS} \cdot \overrightarrow{SA} = -8$
- 2) $\overrightarrow{ST} \cdot \overrightarrow{RS} = -16$
- 4) $\overrightarrow{SB} \cdot \overrightarrow{CB} =$

Corrigé de l'exercice 23

- 2) 45
- 3) 30
- 4) -5
- 5) -128

Corrigé de l'exercice 24

- 1) $x = -\frac{1}{2}$
- 2) $y = \frac{8\sqrt{3}}{7}$

Corrigé de l'exercice 25

Non. Trouver un contre exemple.

Corrigé de l'exercice 26

- 1) x = -3
- 2) Aucune valeur
- 3) $x = -3 + \sqrt{11}$ et $x = -3 \sqrt{11}$
- 4) $x \in]-\infty; -7[\cup]1; +\infty[$

Corrigé de l'exercice 27

- 1) a) $\overrightarrow{AB} = -\overrightarrow{BA}$.
 - b) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -4, 5.$
- 2) a) $\overrightarrow{BA} \cdot \overrightarrow{BC} = 8,5$
- b) $\overrightarrow{CB} \cdot \overrightarrow{CA} = 40,5$

Corrigé de l'exercice 28

- 1) $(3\vec{u} + 2\vec{v}) \cdot (5\vec{u} + 4\vec{v}) = 15 \|\vec{u}\|^2 + 22\vec{u} \cdot \vec{v} + 8 \|\vec{v}\|^2$
- 2) $(5\vec{u} 4\vec{v}) \cdot (\vec{u} + \vec{v}) = 5 \|\vec{u}\|^2 4 \|\vec{v}\|^2 + \vec{u} \cdot \vec{v}$
- 3) $(-3\vec{u} + 6\vec{v}) \cdot (-\vec{u} 5\vec{v}) = 3 \|\vec{u}\|^2 30 \|\vec{v}\|^2 + 9\vec{u} \cdot \vec{v}$
- 4) $(-\vec{u} 5\vec{v}) \cdot (3\vec{u} 6\vec{v}) = -3 \|\vec{u}\|^2 + 30 \|\vec{v}\|^2 9\vec{u} \cdot \vec{v}$

Corrigé de l'exercice 29

Utilisez la relation de Chasles en écrivant $\overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AE} + \overrightarrow{CD}$ \overrightarrow{ED} .

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = -7$$

Corrigé de l'exercice 30

- 1) On utilise l'identité de polarisation avec $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{BC}$
- 2) $\overrightarrow{AB} \cdot \overrightarrow{BC} = 8,25$.

Corrigé de l'exercice 31

- 1) (AC) et (AB) ne sont pas perpendiculaires.
- 2) a) (AC) et (BD) sont perpendiculaires.
 - b) (BE) et (CD) ne sont pas perpendiculaires.

Corrigé de l'exercice 32

- 1) Non
- 2) Oui

Corrigé de l'exercice 33

Calculez $\overrightarrow{BA} \cdot \overrightarrow{BC}$

Corrigé de l'exercice 34

C'est un carré. Il faut le démontrer.

Corrigé de l'exercice 35

$$y = \frac{4}{15}$$

Corrigé de l'exercice 36

Corrigé de l'exercice 37

- 1) m = 0
- 2) Aucune valeur
- 3) $\frac{4}{3}$ et -2
- 4) 0, 1 et -1
- 5) Aucune valeur

Corrigé de l'exercice 38

On peut utiliser un repère orthonormé et montrer que \overrightarrow{FC} .

On peut aussi montrer que $\overrightarrow{EB} = -\frac{2}{3}\overrightarrow{AD} + \overrightarrow{AB}$ et $\overrightarrow{FC} =$ $\frac{1}{6}\overrightarrow{AB} + \overrightarrow{AD}$.

$$\overrightarrow{FC} \cdot \overrightarrow{BE} = \left(-\frac{2}{3}\overrightarrow{AD} + \overrightarrow{AB}\right) \cdot \left(\frac{1}{6}\overrightarrow{AB} + \overrightarrow{AD}\right) = \dots = 0.$$
Corrigé de l'exercice 39

On procède comme dans l'exercice précédent.

Corrigé de l'exercice 40

- 1) Faites-là.
- 2) $\overrightarrow{BA} \cdot \overrightarrow{BC} = 15$.
- 3) $\overrightarrow{CA} \cdot \overrightarrow{CB} = 21$.

Corrigé de l'exercice 41

- 1) a) $\vec{RS} \cdot \vec{RT} = 8$, $\|\vec{RS}\| = 2\sqrt{10} \|\vec{RT}\| = 4\sqrt{5}$
 - b) $\cos\left(\widehat{SRT}\right) = \frac{1}{5\sqrt{2}}$

donc $\widehat{SRT} \approx 81.87^{\circ}$.

- 2) $\widehat{RST} \approx 60.26^{\circ}$
- 3) $\widehat{STR} \approx 37,87$

Corrigé de l'exercice 42

$$MN = \sqrt{89 - 40\sqrt{2}}$$

Corrigé de l'exercice 43

1) Faites-là.

2) $\overrightarrow{IK} = -\overrightarrow{KI}$.

3) $\overrightarrow{IJ} \cdot \overrightarrow{IK} = -11, 5.$

4) $\widehat{JIK} \simeq 125, 1^{\circ}$

Corrigé de l'exercice 44

1) a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = 64, 5$.

b) $\widehat{A} \simeq 39,8^{\circ}$.

2) $\hat{B} \simeq 106, 1^{\circ}$ puis $\hat{C} \simeq 34, 1^{\circ}$.

Corrigé de l'exercice 45

1) Utilisez a relation de Chasles.

2) Utilisez l'égalité précédente.

Corrigé de l'exercice 46

1) $\overrightarrow{CA} \cdot \overrightarrow{CB} = \sqrt{37}CB'$.

2) $CB' = \frac{28}{\sqrt{37}}$ puis $BB' = \frac{17\sqrt{37}}{37}$.

3) L'aire de *ABC* est 8, 5 u.a.

Corrigé de l'exercice 47

1) $\overrightarrow{AB} \cdot \overrightarrow{AD} = 32$

2) $\overrightarrow{BC} \cdot \overrightarrow{BI} = -8$

3) $\overrightarrow{BH} \cdot \overrightarrow{CA} = 16$

4)
$$\overrightarrow{CD} \cdot \overrightarrow{FH} = 12$$

5) $\overrightarrow{HG} \cdot \overrightarrow{BC} = -8$

6) $\overrightarrow{GI} \cdot \overrightarrow{FD} = 8$

Corrigé de l'exercice 48

1) $\overrightarrow{HO} \cdot \overrightarrow{HF} = a^2$

2) $\overrightarrow{EF} \cdot \overrightarrow{EB} = a^2$

3) $\overrightarrow{CH} \cdot \overrightarrow{GE} = \frac{1}{2}a^2$

4) $\overrightarrow{EO} \cdot \overrightarrow{FE} = -\frac{1}{2}a^2$

5) $\overrightarrow{OG} \cdot \overrightarrow{FH} = 0$

6)
$$\overrightarrow{CD} \cdot \overrightarrow{CA} = \frac{1}{2}a^2$$

7) $\overrightarrow{OE} \cdot \overrightarrow{OB} = -\frac{1}{4}a^2$

8) $\overrightarrow{CD} \cdot \overrightarrow{CO} = \frac{1}{4}a^2$

9) $\overrightarrow{EB} \cdot \overrightarrow{EG} = \frac{1}{2}a^2$

Corrigé de l'exercice 49

Corrigé de l'exercice 50

Corrigé de l'exercice 51

Corrigé de l'exercice 52

Corrigé de l'exercice 53