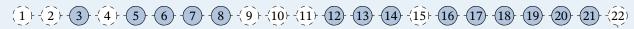
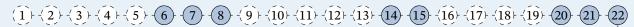
Parcours d'exercices

Calculs numériques

NOMBRES & CALCULS


Ce parcours d'exercices appartient à : _____

Parcours 1


$$\langle \widetilde{3}\widetilde{6} \rangle \cdot \langle \widetilde{3}\widetilde{5} \rangle \cdot \langle \widetilde{3}\widetilde{4} \rangle \cdot \langle \widetilde{3}\widetilde{3} \rangle \cdot \langle \widetilde{3}\widetilde{2} \rangle \cdot \langle \widetilde{3}\widetilde{1} \rangle \cdot \langle \widetilde{3}\widetilde{0} \rangle \cdot \langle \widetilde{2}\widetilde{9} \rangle \cdot \langle \widetilde{2}\widetilde{8} \rangle \cdot \langle \widetilde{2}\widetilde{7} \rangle \cdot \langle \widetilde{2}\widetilde{5} \rangle \cdot \langle \widetilde{2}\widetilde{4} \rangle \cdot \langle \widetilde{2}\widetilde{3} \rangle \cdot \langle \widetilde{$$

Parcours 2

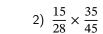
$$(\widetilde{3}\widetilde{6}) + (\widetilde{3}\widetilde{5}) + (\widetilde{3}\widetilde{4}) + (\widetilde{3}\widetilde{3}) + (\widetilde{3}\widetilde{2}) + (\widetilde{3}\widetilde{1}) + (\widetilde{3}\widetilde{0}) + (\widetilde{2}\widetilde{9}) + (\widetilde{2}\widetilde{8}) + (\widetilde{27}) + (\widetilde{26}) + (\widetilde{2}\widetilde{5}) + (\widetilde{2}\widetilde{4}) + (\widetilde{23}) + (\widetilde{2}\widetilde{3}) +$$

Parcours 3

1 Calculer avec des fractions

Exercice 1

Calculer et donner le résultat sous la forme d'une fraction simplifiée.


$$\frac{3}{5} + \frac{2}{6}$$
 ; $2 + \frac{4}{5}$

Exercice 2

Calculer et donner le résultat sous forme irréductible.

1)
$$\frac{7}{12} \times \frac{2}{63}$$

MathALÉA

Exercice 3

Calculer et donner le résultat sous forme irréductible.

irréductible.
$$\frac{7}{10} \div \frac{1}{7} \;\; ; \quad \frac{5}{9} \div \frac{9}{10}$$

MathAl ÉA

Exercice 4

Effectuer les calculs suivants.

1)
$$A = \frac{3}{5} \times \frac{4}{7} + \frac{4}{5}$$
 2) $B = \frac{5}{7} \times \frac{4}{7} - \frac{4}{7}$

Exercice 5

Le triathlon des neiges de la vallée des loups comprend trois épreuves qui s'enchaînent : VTT, ski de fond et course à pied.

Yazid, un passionné de cette épreuve, s'entraîne régulièrement sur le même circuit.

À chaque entraînement, il parcourt le circuit dela façon suivante : $\frac{1}{40}$ à VTT,

 $\frac{2}{5}$ à ski de fond et le reste à pied. Pour quelle discipline, la distance est-elle la plus grande ?

MathALÉA

Exercice 6: Bilan fractions -

Sans brouillon et sans calculatrice. Temps : 3 min

Mon résultat : ... /5

MathAl ÉA

Exercice 7: Bilan fractions -

Sans brouillon et sans calculatrice. Temps: 3 min Mon résultat : ... /5

MathALÉA

Exercice 8: Bilan fractions

Avec un brouillon.

Temps: 15 min

Mon résultat : ... /10

Exercice 14 : Bilan puissances -

Sans brouillon et sans calculatrice. Temps: 3 min

- 1) Calculer avec des puissances.
- 2) Calculer avec des puissances*.
- 3) Calculer avec des puissances.
- 4) Calculer avec une puissance de 10.
- 5) Encadrer avec une puissance de 10.

Mon résultat : ... /5

MathALÉA

Exercice 15: Bilan puissances

Temps: 15 min

Mon résultat : ... /10

Calculer avec des puissances

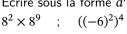
Exercice 9 -

Calculer l'écriture décimale ou fractionnaire des nombres suivants.

$$-2^5$$
 ; $(-9)^2$; 3^{-3}

Exercice 10

Encadrer les nombres suivants par deux puissances de 10 d'exposants consécutifs.



... \le 61,938 \le \ldots

 $\dots \dots \leq 0,0073 \leq \dots \dots$

MathALÉA Exercice 11 -

Écrire sous la forme a^n .

Exercice 12

Écrire sous la forme a^n .

Exercice 13

Calculer.

$$A = 6 + 2^{2} \times (-6)$$

$$B = (-3 + 3 + (-1)^{2}) \times 6$$

Calculer avec des racines carrées

Exercice 16 -

- 1) Encadrer $\sqrt{47}$ par deux entiers consé-
- 2) Encadrer $\sqrt{102}$ par deux entiers consécutifs.

Exercice 17 -

Dire si le nombre proposé existe ou non, en justifiant.

- 1) $\sqrt{3-\pi}$
- 2) $\sqrt{-(-7)^2}$

Exercice 18

Effectuer, si possible les calculs suivants

- 1) $(-4\sqrt{6})^2$
- 2) $-7\sqrt{2} \times (-8)\sqrt{2}$

Exercice 19 -

- 1) Écrire $\sqrt{600}$ sous la forme $a\sqrt{6}$ où aest un entier.
- 2) Écrire $\sqrt{252}$ sous la forme $a\sqrt{7}$ où aest un entier.

Exercice 20

- 1) Écrire $A = -8\sqrt{320} 6\sqrt{20} 5\sqrt{80}$ sous la forme $a\sqrt{5}$ où a est un entier.
- 2) Écrire $B = 7\sqrt{50} 7\sqrt{162} + 4\sqrt{242}$ sous la forme $a\sqrt{2}$ où a est un entier.

Exercice 21

Effectuer les calculs suivants.

- 1) $(6\sqrt{5} + 7)(2 + 2\sqrt{5})$.
- 2) $(9\sqrt{6} + 6)(2\sqrt{6} 3)$.

MathALÉ/

Exercice 22

Supprimer la racine carrée du dénominateur des fractions suivantes.

- 1) $A = \frac{9}{\sqrt{10}}$
- 2) $A = \frac{3}{\sqrt{6}}$

■ MathALÉ

Exercice 23 : Bilan racines carrées -

Sans brouillon et sans calculatrice. Temps : 4 min Mon résultat : ... /6

MathALÉA

Exercice 24 : Bilan racines carrées

Avec un brouillon

Temps: 20 min

Mon résultat : ... /10

MathALÉA

4 S'entraîner/Chercher

Exercice 25 -

On laisse tomber une balle d'une hauteur de 1 mètre. A chaque rebond elle rebondit des $\frac{3}{4}$ de la hauteur d'où elle est tombée.

Quelle hauteur atteint la balle au cinquième rebond? Arrondir au cm près.

Exercice 26

Quatre enfants se partagent une tablette de chocolat. Le premier prend le tiers de la tablette et le second le quart. Le troisième prend les $\frac{2}{5}$ de ce qui reste après que le premier et le deuxième se sont servis.

1) Lequel de ces calculs permet de trouver la part du troisième ?

Troiserie:
$$A = 1 - \frac{1}{3} - \frac{1}{4} \times \frac{2}{5}$$
 $B = \left(1 - \frac{1}{3} - \frac{1}{4}\right) \times \frac{2}{5}$ $C = \left(1 - \frac{1}{3} - \frac{1}{4}\right) \div \frac{2}{5}$ $D = 1 - \left(\frac{1}{3} - \frac{1}{4}\right) \times \frac{2}{5}$

2) Effectuer le calcul choisi.

DNE

Exercice 27 -

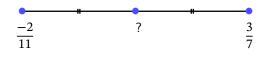
La relation entre la longueur c du côté d'un carré et la longueur d de sa diagonale est donnée par la formule : $d=c\sqrt{2}$

- 1) La longueur du côté d'un carré est $\sqrt{8} + \sqrt{2}$.
 - a) Montrer que la longueur de sa diagonale est un nombre entier.
 - b) Montrer que l'aire de ce carré est un nombre entier
- 2) La longueur de la diagonale d'un carré est $\sqrt{40}$. Calculer la longueur de son côté et exprimer cette longueur sous la forme $a\sqrt{5}$ où a est un entier naturel.

DNB

Exercice 28

Montrer que les nombres A et B sont des entiers.


$$A = \frac{3\sqrt{18} - 3\sqrt{2}}{\sqrt{2}} \text{ et } B = (\sqrt{8} - 2)(2\sqrt{2} + 2)$$

MathGM

Exercice 29

Sur une droite graduée, on a représenté les nombres $\frac{-2}{11}$ et $\frac{3}{7}$.

Quel nombre se trouve au dessus du point d'interrogation?

Exercice 30

L'unité de longueur est le centimètre.

Soit deux triangles rectangles dont on connaît les dimensions des côtés de l'angle droit :

Triangle $\mathcal{T}_1 \sqrt{5} + 1$ et $\sqrt{5} - 1$;

Triangle \mathcal{F}_2 2 + $\sqrt{2}$ et 2 - $\sqrt{2}$.

Ont-ils la même aire? la même hypoténuse?

Svracuse

MathGM

Exercice 31 -

Soit $a = 2^3 \times 5^2$ et $b = 2^5 \times 5^{-3}$ Calculer sous la forme $2^x \times 5^y$ les nombres $a \times b$ et a^3 .

Exercice 32

L'unité de longueur est le centimètre; l'unité d'aire est le cm^2 .

Soit un triangle *EFG*, rectangle en *E* tel que $FE = 5 + \sqrt{3}$ et $EG = 5 - \sqrt{3}$.

- 1) Calcule la longueur FG.
- 2) Détermine l'aire du triangle EFG.
- 3) La hauteur issue de E coupe le segment [FG] en H. Calcule la longueur EH.

Syracuse

Exercice 33

Voici les distances (en km) qui séparent le soleil de trois planètes du système solaire :

Vénus : Mars : Terre :
$$105 \times 10^6$$
 2250×10^5 1.5×10^8

Parmi ces trois planètes, quelle est celle qui est la plus éloignée du soleil? Justifier.

Exercice 34 -

Écrire les nombres A, B etC en écriture scientifique :

$$A = \frac{7 \times 10^{15} \times 8 \times 10^{-8}}{5 \times 10^{-4}}$$

$$B = \frac{2,5 \times 10^{-3} \times 9 \times 10^{5}}{15 \times 10^{-4}}$$

$$C = \frac{2,6 \times 10^2 \times 1,7 \times 10^2}{0,2 \times 10^5 \times 10^3}$$

DNB

Exercice 35 -

- 1) Démontrer que, pour tout entier naturel n, on a : $2^n = 2^{n+1} - 2^n$
- 2) En déduire la valeur de : $S = 1 + 2 + 4 + 8 + 16 + 32 + \dots + 2^{2000}$
- 3) Exprimer simplement en fonction de n la somme : $S_n = 1 + 2 + 4 + 8 + 16 + 32 + \dots + 2^n$

Exercice 36 -

- 1) Pour obtenir un ordre de grandeur d'un nombre A dont l'écriture scientifique est $a \times 10^n$, on prend l'arrondi à l'unité de a et on conserve la puissance de 10. Donner un ordre de grandeur de 0,000 000 0254 et de 39 150.
- 2) La distance de la Terre au Soleil est en moyenne de 149 597 900 km. La vitesse de la lumière dans le vide est égale à environ 299 792 km/s. Mettre ces deux nombres sous forme scientifique, en déduire un ordre de grandeur de chacun, puis calculer mentalement un ordre de grandeur du temps nécessaire (en secondes) à un rayon de lumière pour parcourir la distance Soleil-Terre.

(Correction)

Corrigé de l'exercice 1

Corrigé en ligne.

Corrigé de l'exercice 2

1)
$$\frac{7}{12} \times \frac{2}{63} = \frac{7 \times 2}{12 \times 63} = \frac{7 \times 2}{2 \times 2 \times 3 \times 3 \times 3 \times 7} = \frac{\cancel{\cancel{1}} \times \cancel{\cancel{1}}}{\cancel{\cancel{\cancel{1}} \times 2 \times 3 \times 3 \times 3 \times \cancel{\cancel{1}}}} = \frac{1}{54}$$
2) $\frac{15}{28} \times \frac{35}{45} = \frac{15 \times 35}{28 \times 45} = \frac{3 \times 5 \times 5 \times 7}{2 \times 2 \times \cancel{\cancel{1}} \times 3 \times \cancel{\cancel{1}}} = \frac{5}{12}$

Corrigé de l'exercice 3

Corrigé en ligne.

Corrigé de l'exercice 4

1)
$$A = \frac{3}{5} \times \frac{4}{7} + \frac{4}{5}$$

 $A = \frac{12}{35} + \frac{4}{5}$
 $A = \frac{12}{35} + \frac{28}{35}$
 $A = \frac{40}{35}$
 $A = \frac{8 \times 5}{7 \times 5} = \frac{8}{7}$
2) $B = \frac{5}{7} \times \frac{4}{7} - \frac{4}{7}$
 $B = \frac{20}{49} - \frac{4}{7}$
 $B = \frac{20}{49} - \frac{28}{49}$
 $B = \frac{-8}{49}$

Corrigé de l'exercice 5

Corrigé en ligne

Corrigé de l'exercice 6

Corrigé en ligne.

Corrigé de l'exercice 7

Corrigé en ligne.

Corrigé de l'exercice 8

Corrigé en ligne.

Corrigé de l'exercice 9

Corrigé en ligne

Corrigé de l'exercice 10

Corrigé en ligne.

Corrigé de l'exercice 11

Corrigé en ligne.

Corrigé de l'exercice 12

Corrigé en ligne.

Corrigé de l'exercice 13

Corrigé en ligne.

Corrigé de l'exercice 14

Corrigé en ligne.

Corrigé de l'exercice 15

Corrigé en ligne.

Corrigé de l'exercice 16

Corrigé en ligne.

Corrigé de l'exercice 17

Corrigé en ligne.

Corrigé de l'exercice 18

Corrigé en ligne.

Corrigé de l'exercice 19

Corrigé en ligne.

Corrigé de l'exercice 20

Corrigé en ligne.

Corrigé de l'exercice 21

Corrigé en ligne.

Corrigé de l'exercice 22

Corrigé en ligne.

Corrigé de l'exercice 23

Corrigé en ligne.

Corrigé de l'exercice 24

Corrigé en ligne.

Corrigé de l'exercice 25

0,24 m

Corrigé de l'exercice 26

1) B

2)
$$B = \frac{1}{6}$$

Corrigé de l'exercice 27

La relation entre la longueur c du côté d'un carré et la longueur d de sa diagonale est donnée par la formule :

$$d = c\sqrt{2}$$

- 1) La longueur du côté d'un carré est $\sqrt{8} + \sqrt{2}$.
 - a) Diagonale = 6
 - b) Aire = 18
- 2) Longueur = $2\sqrt{5}$

Corrigé de l'exercice 28

Simplifiez les racines carrées mises en jeu dans les calculs, puis faites le quotient et développement.

Corrigé de l'exercice 29

 $\frac{34}{165}$

Corrigé de l'exercice 30

Aires différentes, hypoténuses identiques.

Corrigé de l'exercice 31

$$a \times b = 2^8 \times 5^{-1}$$
 et $a^3 = 2^9 \times 5^6$

Corrigé de l'exercice 32

1)
$$FG = \sqrt{59}$$

2) Aire du triangle *EFG*: 11 cm²

3)
$$EH = \frac{22}{\sqrt{59}}$$

Corrigé de l'exercice 33

Pour comparer les distances on peut les écrire en notation scientifique.

La planète la plus éloignée de la terre est Mars.

Corrigé de l'exercice 34

Écrire les nombres A, B etC en écriture scientifique :

•
$$A = 1,12 \times 10^{12}$$

•
$$B = 1,5 \times 10^6$$

•
$$C = 2,21 \times 10^{-3}$$

Corrigé de l'exercice 35

1) 2^{n+1} est le double de 2^n . Donc $2^{n+1} = 2 \times 2^n$ et donc ...

2)
$$1 = 2^0 = 2^1 - 2^0$$
, $2 = 2^1 = 2^2 - 2^1$, $4 = 2^2 = 2^3 - 2^2$, etc...

3) C'est le même raisonnement que celui dans la question précédente.

Corrigé de l'exercice 36

- 1) $0,0000000254 \simeq 2,54 \times 10^{-8} \text{ et } 39150 \simeq 4 \times 10^4.$
- 2) 500 secondes