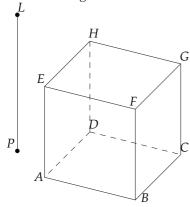
GÉOMÉTRIE

2

Vecteurs, droites et plans de l'espace

Les savoir-faire du chapitre

- ▶ 20. Représenter et utiliser une combinaison linéaire de vecteurs donnés pour résoudre un problème.
- ▶ 21. Étudier les positions relatives de droites et de plans.
- ▶ 22. Utiliser les coordonnées pour résoudre des problèmes (alignement, colinéarité, coplanarité,...).

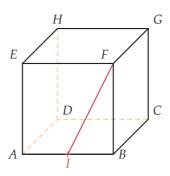


Le problème de Nabolos

On considère un cube ABCDEFGH.

Un réverbère est représenté par le segment [PL] avec L le point représentant son ampoule et P le projeté orthogonal du point L sur le plan (ABC).

Reproduire cette figure et tracer l'ombre de ce cube.



S'entraîner

Représenter et utiliser une combinaison linéaire de vecteurs donnés pour résoudre un problème.

 $\overline{ABCDEFGH}$ est un cube et I est le milieu de [AB].

1) Placer sur la figure les points M et N définis vectoriellement par :

a)
$$\overrightarrow{AM} = \overrightarrow{AB} + 2\overrightarrow{IF}$$

b)
$$\overrightarrow{HN} = \overrightarrow{DB} + 2\overrightarrow{FG}$$

2) Compléter les égalités vectorielles suivantes :

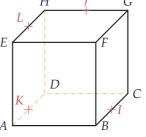
a)
$$\overrightarrow{AI} + \overrightarrow{CD} - \overrightarrow{CI} = \overrightarrow{F}$$
...

b)
$$\overrightarrow{AH} + \overrightarrow{CD} - \overrightarrow{FG} = \overrightarrow{B}$$
...

c)
$$\overrightarrow{FD} + \overrightarrow{CB} + \overrightarrow{DG} = \dots$$

- 3) Avec la même figure :
 - a) Exprimer le vecteur \overrightarrow{FI} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AE} .
 - b) \overrightarrow{O} étant le centre du cube, exprimer le vecteur \overrightarrow{AO} en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} .

Représenter et utiliser une combinaison linéaire de vecteurs donnés pour résoudre un problème.

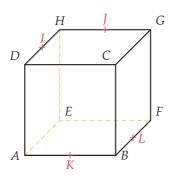

ABCDEFGH est un cube et I; J; K et L les milieux respectifs de [BC], [GH], [AD] et [EH].

Le point M est défini par $\overrightarrow{EM} = 2\overrightarrow{EF}$

1) En fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} exprimer les vecteurs suivants :

$$\overrightarrow{EM}$$
; \overrightarrow{HC} ; \overrightarrow{BD} ; \overrightarrow{BK} ; \overrightarrow{KM} et \overrightarrow{MJ} .

2) Les droites (BK) et (MJ) sont-elles parallèles ?(utiliser la question précédente).



3) Que peut-on en déduire concernant les points *B*, *K*, *M* et *J*?

 		•							 			 							 		 		 		 															٠.		. .		
 		•		•				 •				 			 •				 		 		 		 		 •				 •						 •				 	. .		
 		•		•				 •				 			 •				 		 		 		 		 •				 •						 •				 	. .		
 	٠.								 										 		 		 		 															٠.				
 		•																	 		 		 		 																			

Étudier les positions relatives de droites et de plans.

ABCDEFGH est un pavé droit; I, J, K et L sont les milieux respectifs de [DH], [HG], [AB] et [BF].

- 1) Donner la position relative des deux droites citées :
 - **a)** (*DB*) et (*EF*);
 - **b)** (*IJ*) et (*AF*);
 - **c)** (*IC*) et (*AB*);
 - **d)** (*JF*) et (*EH*).
- 2) Donner la position relative des deux plans cités :
 - **a)** (*DCG*) et (*AEF*);
 - **b)** (*IJA*) et (*HDC*);
 - **c)** (*IJE*) et (*CKL*).
- 3) Donner la position relative de la droite et du plan cités :
 - **a)** (*IJ*) et (*ABF*);
 - **b)** (*IJ*) et (*BCG*);
 - **c)** (*KE*) et (*ABF*).

Utiliser les coordonnées pour la colinéarité, l'alignement ou la décomposition d
--

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points A(2;5;-1); B(0;3;4) et le vecteur $\overrightarrow{u}(2;-1;4)$.

- 1) Déterminer les coordonnées du point C défini par $\overrightarrow{AC} = \overrightarrow{u}$
- 2) Déterminer les coordonnées du vecteur \overrightarrow{AB} puis celles du point D tel que ABDC soit un parallélogramme.
- 3) Déterminer les coordonnées du centre *K* de ce parallélogramme.

 	 		 			 					 		 					 					 					 -					-	 					
 • •	 	• •	 • •	• •	• • •	 ٠.		• •	• •	• •	 • •	• •	 • •	٠.	• •			 	 • •	 	 	• •	 			• •	• •	 • •	٠.		• •	• •	• •	 • • •	 • •	• •	• •	• • •	
 • •	 		 ٠.	٠.	• • •	 ٠.	٠.	٠.		• •	 	٠.	 	٠.		٠.	٠.	 	 	 	 		 	٠.	٠.		• •	 	٠.		٠.	• •	• •	 • •	 	• •		• • •	
 ٠.	 		 ٠.	٠.		 ٠.	٠.	٠.		٠.	 		 ٠.	٠.	٠.	٠.	٠.	 	 	 	 		 	٠.	٠.	٠.		 	٠.	٠.	٠.			 	 	٠.	٠.		
 	 		 ٠.	٠.		 ٠.	٠.	٠.			 		 ٠.	٠.			٠.	 	 	 	 		 	٠.	٠.	٠.		 	٠.		٠.			 	 		٠.		
 	 		 ٠.	٠.		 ٠.	٠.	٠.			 		 ٠.	٠.			٠.	 	 	 	 		 	٠.	٠.	٠.		 	٠.		٠.			 	 		٠.		
 	 		 ٠.			 ٠.	٠.				 		 ٠.	٠.	٠.	٠.	٠.	 	 	 	 		 	٠.	٠.	٠.		 		٠.	٠.			 	 	٠.			
 ٠.	 		 			 ٠.		٠.			 		 	٠.			٠.	 	 	 	 		 	٠.	٠.			 	٠.					 	 				

S'entraîner

Dans un repère (1) Démontrer qu	iser les coordonnées pour la colinéarité, l'alignement ou la décomposition de vecteurs. $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points $A(-4;2;3)$, $B(1;5;2)$, $C(0;5;4)$ et $D(-6;-1;-2)$. Le $\overrightarrow{AD} = 2\overrightarrow{AB} - 3\overrightarrow{AC}$. Le déduire concernant les points A , B , C et D ?
Dans un repère (1) Montrer que l	iser les coordonnées pour la colinéarité, l'alignement ou la décomposition de vecteurs. $O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points $A(1; -1; -1)$, $B(5; 0; -3)$, $C(2; -2; -2)$ et $D(0; 5; -2)$. es points A, B et C définissent un plan.
2) Le point <i>D</i> ap	partient-il à ce plan ?
	partient-il à ce plan ?