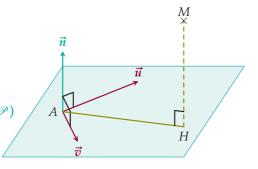
Orthogonalité et distances dans l'espace

GÉOMÉTRIE

4

Les savoir-faire du chapitre


- ▶ 40. Calculer et utiliser un produit scalaire.
- ▶ 41. Etudier l'orthogonalité de droites et de plans.
- ▶ 42. Déterminer et utiliser un vecteur normal à un plan.
- ▶ 43. Utiliser la projection orthogonale pour déterminer la distance d'un point à une droite ou un plan.

Le problème de Nabolos

Dans un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère un plan (\mathcal{P}) passant par un point A et dirigé par deux vecteurs non colinéaires \vec{u} et \vec{v} .

Soit \vec{n} un vecteur non nul, simultanément orthogonal à \vec{u} et \vec{v} . (\mathscr{P})

- **1.** Démontrer que \vec{n} est aussi orthogonal à tout vecteur \vec{w} de (\mathcal{P}) . En déduire que si M est un point de (\mathcal{P}) , alors $\vec{n} \cdot \overrightarrow{AM} = 0$.
- 2. Démontrons maintenant la réciproque.

Énoncer cette réciproque.

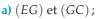
Soit *M* un point de l'espace.

On considère le point H, projeté orthogonal de M sur le plan (\mathcal{P}) .

Démontrer, en calculant $\vec{n} \cdot \overrightarrow{AM}$, que si $\vec{n} \cdot \overrightarrow{MA} = 0$, alors HM = 0 puis en déduire que $M \in (\mathscr{P})$.

Énoncer la propriété démontrée.

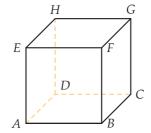
S'entraîner


Calculer et utiliser un produit scalaire.				
Dans un repère oi	rthonormé $(O; \vec{i}, \vec{j}, \vec{k})$ on cor	nsidère les vecteurs \vec{u}	$\begin{pmatrix} 1 \\ \sqrt{2} \\ -1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 0 \\ 2\sqrt{2} \\ 1 \end{pmatrix}$. On note θ la mesure en
degrés de l'angle 1) $\ \vec{u}\ $	géométrique formé par les vec \mathbf{z}) $\ \vec{v}\ $	cteurs \vec{u} et \vec{v} . Calculer:	4) (
	ller et utiliser un produit scala		E /	
de [EH] et J le cer	cube $ABCDEFGH$ de côté $a > 1$ ntre de la face $CDHG$. tion de a les produits scalaires 4) $\overrightarrow{EH} \cdot \overrightarrow{FC}$ 5) $\overrightarrow{BC} \cdot \overrightarrow{BG}$ 6) $\overrightarrow{HC} \cdot \overrightarrow{GD}$		F	G J D

Etudier l'orthogonalité de droites et de plans.

ABCDEFGH est un cube.

- 1) a) Citer six droites orthogonales à la droite (EA);
 - **b)** Citer six droites orthogonales à la droite (*EB*);
 - c) Citer deux droites orthogonales au plan (BCG);
 - d) Citer deux droites orthogonales au plan (AFG).
- 2) a) Démontrer que la droite (AB) est orthogonale au plan (BCG).
 - b) En déduire que les droites (AB) et (CF) sont orthogonales.


d) (*AC*) et (*HF*);

b) (*EB*) et (*EG*);

e) (*BD*) et (*EC*);

c) (*AF*) et (*BC*);

f) (*CE*) et (*AG*).

Déterminer et utiliser un vecteur normal à un plan.

Dans l'espace muni d'un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$, on considère les deux points A(1;2;1), B(4;6;3) et les vecteurs \vec{u}

- 1) Démontrer que le point A et les vecteurs \vec{u} et \vec{v} définissent bien un plan.
- 2) Démontrer que \overrightarrow{AB} est un vecteur normal à ce plan.

S'entraîner

Utiliser la projection orthogonale pour déterminer la distance d'un point à une droite ou un plan.
L'espace est muni d'un repère orthonormé. On considère les points $A(2;3;3)$, $B(-1;17;-17)$ et le vecteur $\vec{n} \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$.
On note \mathscr{P} le plan passant par A et de vecteur normal \vec{n} .
1) Démontrer que le point $H(-9;5;-1)$ appartient à \mathscr{P} .
2) a) Démontrer que H est le projeté orthogonal de B sur \mathscr{P}
b) En déduire la distance du point B au plan \mathcal{P} .
3) Soit C(5; 11; -5).
a) Justifier que <i>C</i> est le projeté orthogonal de <i>H</i> sur la droite (<i>BC</i>).
b) Calculer la distance du point H à la droite (BC).
b) Calculer la distance du point 11 à la droite (BC).