MATHÉMATIQUES Devoir surveillé (corrigé) (2 heures)

Exercice 1

1. a. \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix} = \begin{pmatrix} 0 - 1 \\ 2 - 0 \\ -1 - 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$.

Le vecteur \overrightarrow{AC} a pour coordonnées $\begin{pmatrix} -1\\0\\ 1 \end{pmatrix}$.

Les vecteurs ne sont pas colinéaires (coordonnées non proportionnelles), on en déduit que les points A, B et Cdéfinissent bien un plan.

b. On cherche a et b de façon que $\vec{n}.\overrightarrow{AB} = 0$ et $\vec{n}.\overrightarrow{AC} = 0$. On obtient : $\begin{cases} -a + 2b - 9 = 0 \\ -a + 3 = 0 \end{cases}$ soit $\begin{cases} b = 6 \\ a = 3 \end{cases}$. On en déduit que : $\vec{n} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix}$

c. Une équation cartésienne de \mathscr{P} est : 3x + 6y + 3z + d = 0.

Comme $A \in \mathcal{P}$, alors : $3 \times 1 + 6 \times 0 + 3 \times 2 + d = 0$, soit d = -9.

Une équation cartésienne de \mathscr{P} est : 3x + 6y + 3z - 9 = 0.

2. Une représentation paramétrique de \mathscr{D} est donnée par : $\begin{cases} x = -1 - 2t \\ y = 2 + 3t \\ z = -3 - 4t \end{cases}$ avec $t \in \mathbb{R}$. Un vecteur directeur de Δ est $\vec{u} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Ce vecteur n'est pas colinéaire au vecteur \vec{d} car leurs coordonnées ne sont pas proportionnelles.

pas proportionnelles.

On en déduit que les droites \mathscr{D} et Δ sont soit sécantes (et donc coplanaires) soit non coplanaires.

le système formé par les deux premières équations : $\begin{cases} -1 - 2t = 2 + u \\ 2 + 3t = -6 + 2u \end{cases} \iff \begin{cases} u = -3 - 2t \\ 2 + 3t = -6 + 2(-3 - 2t) \end{cases} \iff \begin{cases} u = -3 - 2t \\ t = -2 \end{cases} \iff \begin{cases} t = -2 \\ u = 1 \end{cases}$

Ces deux valeurs vérifient la dernière équation. On en déduit que les droites \mathscr{D} et Δ sont sécantes en un point Fdont les coordonnées sont (3; -4; 5).

3. a.
$$\frac{3}{2}\overrightarrow{AB}$$
 a pour coordonnées $\begin{pmatrix} -\frac{3}{2} \\ 3 \\ -\frac{9}{2} \end{pmatrix}$ et $\frac{1}{2}\overrightarrow{AC}$ a pour coordonnées $\begin{pmatrix} -\frac{1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix}$.

Ainsi,
$$\frac{3}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$
 a pour coordonnées $\begin{pmatrix} -2\\3\\-4 \end{pmatrix}$ qui sont les coordonnées du vecteur \overrightarrow{d} . On vient donc de montrer

que
$$\vec{d} = \frac{3}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}$$
.

- **b.** Le point E n'appartient pas à \mathscr{P} car : $3 \times (-1) + 6 \times 2 + 3 \times (-3) 9 \neq 0$.
- c. L'égalité $\overrightarrow{d} = \frac{3}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ permet d'affirmer que les vecteurs \overrightarrow{d} , \overrightarrow{AB} et \overrightarrow{AC} sont coplanaires. Par conséquent la droite \mathscr{D} est parallèle au plan \mathscr{P} . De plus E n'est pas dans le plan \mathscr{P} et donc la droite dirigée par \overrightarrow{d} passant par E est strictement parallèle au plan \mathscr{P} .

Exercice 2

- Partie A -

1. Pour tout réel x strictement positif,

$$\frac{x^4 + 2x^3 - 3ax^2 + 2}{x^4 + 1} = \frac{x^4 \left(1 + \frac{2}{x} - \frac{3a}{x^2} + \frac{2}{x^4}\right)}{x^4 \left(1 + \frac{1}{x^4}\right)} = \frac{1 + \frac{2}{x} - \frac{3a}{x^2} + \frac{2}{x^4}}{1 + \frac{1}{x^4}}$$

$$\lim_{x \to +\infty} \frac{2}{x} = \lim_{x \to +\infty} \frac{3a}{x^2} = \lim_{x \to +\infty} \frac{2}{x^4} = \lim_{x \to +\infty} \frac{1}{x^4} = 0$$

$$\text{Par somme } \lim_{x \to +\infty} \left(1 + \frac{2}{x} - \frac{3a}{x^2} + \frac{2}{x^4} \right) = 1$$

$$\text{Par somme } \lim_{x \to +\infty} \left(1 + \frac{1}{x^4} \right) = 1$$

Ainsi
$$\lim_{x \to +\infty} g_a(x) = 1$$
.

On en déduit que la droite d'équation y=1 est une asymptote horizontale en ∞ .

2. Conjectures:

- Si 0 < a < 1, il n'y a pas de point d'intersection entre D et C_a .
- Si a = 1, il y a un point d'intersection entre D et C_a .
- Si a > 1, il y a deux points d'intersection entre D et C_a .

- Partie B -

1. L'abscisse du point d'intersection de C_a et D vérifie : $g_a(x) = 1$.

$$g_a(x) = 1 \iff \frac{x^4 + 2x^3 - 3ax^2 + 2}{x^4 + 1} = 1$$

 $\iff x^4 + 2x^3 - 3ax^2 + 2 = x^4 + 1$
 $\iff 2x^3 - 3ax^2 + 1 = 0$
 $\iff h_a(x) = 0$

2

2. •
$$h_a(0) = 2 \times 0^3 - 3a \times 0^2 + 1 = 1$$
.

•
$$h_a(a) = 2a^3 - 3a^3 + 1 = -a^3 + 1$$
.

•
$$2x^3 - 3ax^2 + 1 = x^3 \left(2 - \frac{3a}{x} + \frac{1}{x^3}\right)$$

$$\lim_{x \to +\infty} \left(\frac{3a}{x} + \frac{1}{x^3} \right) = 0$$
Par somme $\lim_{x \to +\infty} \left(2 - \frac{3a}{x} + \frac{1}{x^3} \right) = 2$
Par produit, $\lim_{x \to +\infty} x^3 \left(2 - \frac{3a}{x} + \frac{1}{x^3} \right) = +\infty$

$$\lim_{x \to +\infty} x^3 = +\infty$$
For produit, $\lim_{x \to +\infty} x^3 \left(2 - \frac{3a}{x} + \frac{1}{x^3} \right) = +\infty$
from h , set upo fonction polynôme du traigième degré, elle set done dérivable sur $[0: +\infty]$

• La fonction h_a est une fonction polynôme du troisième degré, elle est donc dérivable sur $[0; +\infty[$. $h'_a(x) = 6x^2 - 6ax = 6x(x-a)$.

x	0	$lpha_1$	a	$lpha_2$	$+\infty$
6 <i>x</i>	0	+		+	
x-a		: : : : :	0	+	
$h'_a(x)$	0	<u>:</u> :	0	+	
$h_a(x)$	1	0	$-a^3+1$	0	+∞

- **3.** a. $-2, 5^2 + 1 = -14, 625 < 0$.
 - h_a est continue sur [0; 2, 5]
 - h_a est strictement décroissante sur [0; 2, 5];
 - $0 \in [-14, 625; 1]$.

D'après le théorème des valeurs intermédiaires, l'équation $h_a(x) = 0$ admet une unique solution α_1 sur [0; 2, 5].

- **b.** En utilisant la calculatrice, $\alpha_1 \simeq 0,39$ et $\alpha_2 \simeq 3,71$. Ces nombres sont des valeurs approchées des abscisses des points d'intersection de D avec $C_{2,5}$.
- 4. Tableau de signes de $-a^3 + 1$:

x	0		1		+∞
$-a^3 + 1$		+	0	_	

Sur $[0; 1[, -a^3 + 1 \text{ est positif. Le minimum de } h_a \text{ est donc positif. Par conséquent, l'équation } h_a(x) = 0$ n'a pas de solution. Ainsi, il n'y a pas de point d'intersection entre D et C_a .

Sur]1 ; $+\infty$ [, $-a^3 + 1$ est négatif. Le minimum de h_a est donc négatif. Par conséquent, l'équation $h_a(x) = 0$ a deux solutions. Ainsi, il y a deux points d'intersection entre D et C_a .

Si $a = 1, -a^3 + 1 = 0$. Le minimum de h_a est nul. Par conséquent, l'équation $h_a(x) = 0$ a une solution. Ainsi, il y a un point d'intersection entre D et C_a .

Exercice 3

On s'intéresse à la fonction f définie sur \mathbb{R} par $f(x) = -2(x+2)e^{-x}$

Partie A

1. • Limite de f en $-\infty$:

$$\lim_{\substack{x \to -\infty \\ X \to +\infty}} -x = +\infty$$

$$\lim_{\substack{x \to +\infty \\ X \to +\infty}} e^X = +\infty$$
Par composition, $\lim_{\substack{x \to -\infty \\ x \to -\infty}} e^{-x} = +\infty$

$$\lim_{x \to -\infty} -2(x+2) = +\infty$$

$$\lim_{x \to -\infty} e^{-x} = +\infty$$
Par produit,
$$\lim_{x \to -\infty} -2(x+2)e^{-x} = +\infty$$

• Limite de f en $+\infty$:

Par produit, on a une forme indéterminée. Il s'agit de transformer l'écriture de f(x).

$$f(x) = -2(x+2)e^{-x} = -2xe^{-x} - 4e^{-x}.$$

$$\lim_{x \to +\infty} xe^{-x} = 0, \text{ donc } \lim_{x \to +\infty} -2xe^{-x} = 0$$

$$\lim_{x \to +\infty} xe^{-x} = 0$$

$$\lim_{x \to +\infty} 4e^{-x} = 0$$
Par somme,
$$\lim_{x \to +\infty} -2xe^{-x} - 4e^{-x} = 0$$

- **2.** La fonction f est dérivable sur \mathbb{R} comme produit de fonctions dérivables sur \mathbb{R} : $f'(x) = -2(1)e^{-x} 2(x+2)(-1)e^{-x} = (-2+2x+4)e^{-x} = 2(x+1)e^{-x}$.
- **3.** Pour tout réel x, $e^{-x} > 0$ donc f'(x) est du signe de x + 1 sur \mathbb{R} .
 - Si x < -1, f'(x) < 0 donc f est strictement décroissante sur $]-\infty$; -1];
 - Si x > -1, f'(x) > 0 donc f est strictement croissante sur $[-1; +\infty[$;
 - f'(-1) = 0 et f admet un minimum en -1 égal à f(-1) = -2e.

x	$-\infty$		-1		$+\infty$
2(x+1)		_	0	+	
e^{-x}		+		+	
f'(x)		_	0	+	
f(x)	+∞		-2e		<i>y</i> 0

Partie B

On sait que sur un intervalle : f convexe $\iff f'$ croissante $\iff f''$ positive Il faut donc déterminer quelle fonction correspond à chacune des courbes \mathcal{C}_1 , \mathcal{C}_2 et \mathcal{C}_3 .

- La seule courbe qui corresponde aux variations de la fonction f est \mathcal{C}_3 .
- La courbe C_1 correspond à une fonction négative sur $]-\infty$; -1[et positive sur]-1; $+\infty[$; c'est donc la courbe représentative de la fonction f' car la fonction f est décroissante sur $]-\infty$; -1[et croissante sur]-1; $+\infty[$.
- La courbe C_2 est donc la représentation graphique de la fonction f''.

Pour déterminer la convexité de la fonction f, il suffit de regarder le signe de la fonction f'': f''>0 sur l'intervalle $]-\infty; 0[$ donc la fonction f est convexe sur l'intervalle $]_4-\infty; 0[$.