

MATHEMATIQUES Dérivation, continuité et convexité : entraînement 3 (corrigé)

Exercice 1

Partie A: étude d'un cas particulier

1. Calcul de C'(t).

On a pour tout $t \in [0; +\infty[: C(t) = 12 - 12e^{-\frac{7}{80}t}]$.

La fonction C est dérivable sur \mathbb{R} (comme somme de fonctions dérivables) et :

$$C'(t) = -12 \times \left(-\frac{7}{80}\right) e^{-\frac{7}{80}t}$$
$$= \frac{12 \times 7}{80} e^{-\frac{7}{80}t}$$
$$= \frac{21}{20} e^{-\frac{7}{80}t}$$

Sans modifier l'écriture de C(t) on a : $C'(t) = 12 \left(0 - \left(-\frac{7}{80}\right) e^{-\frac{7}{80}t}\right) = \frac{21}{20} e^{-\frac{7}{80}t}.$

$$\frac{21}{20}e^{-\frac{7}{80}t} > 0 \text{ sur } [0; +\infty[,$$

donc la fonction C est strictement croissante sur $[0; +\infty[$.

2. Le plateau est la limite de la fonction C en $+\infty$.

$$\lim_{t \to +\infty} -\frac{7}{80}t = -\infty$$

$$\lim_{t \to +\infty} e^{T} = 0$$
Par composition,
$$\lim_{t \to +\infty} e^{-\frac{7}{80}t} = 0 \text{ donc } \lim_{t \to +\infty} 12\left(1 - e^{-\frac{7}{80}t}\right) = 12.$$

Ainsi, $\lim_{t \to +\infty} C(t) = 12$.

Le plateau devrait être égal à 15; il n'est que de 12 donc le traitement n'est pas adapté.

Partie B : étude de fonctions

1. Calcul de la dérivée de la fonction f.

La fonction f est dérivable sur]0; $+\infty[$ comme produit de fonctions dérivables et :

$$f'(x) = \underbrace{105\left(-\frac{1}{x^2}\right)}_{u'(x)} \times \underbrace{\left(1 - e^{-\frac{3}{40}x}\right)}_{v(x)} + \underbrace{\frac{105}{x}}_{u(x)} \times \underbrace{\left(0 - \left(-\frac{3}{40}e^{-\frac{3}{40}x}\right)\right)}_{v'(x)}$$

$$= \frac{-105}{x^2} \left(1 - e^{-\frac{3}{40}x}\right) + \frac{105x}{x^2} \times \frac{3}{40}e^{-\frac{3}{40}x}$$

$$= \frac{105}{x^2} \left(-1 + e^{-\frac{3}{40}x} + \frac{3x}{40}e^{\frac{3}{40}}\right)$$

$$= \frac{105g(x)}{x^2}$$

où g est la fonction définie sur]0; $+\infty[$ par $g(x) = \frac{3x}{40}e^{-\frac{3}{40}x} + e^{-\frac{3}{40}x} - 1.$

2. Sens de variation de f.

$$f'(x) = \frac{105g(x)}{x^2}$$
 donc $f'(x)$ est du signe de $g(x)$ sur $]0$; $+\infty[$.

D'après le tableau de variations de la fonction g, g(x) < 0 sur]0; $+\infty[$, donc f'(x) < 0 sur]0; $+\infty[$ et donc la fonction f est strictement décroissante sur]0; $+\infty[$.

3. Solution de l'équation f(x) = 5, 9.

x	0	1	α	80	$+\infty$
f'(x)			-		
f(x)		~ ≃ 7,59 _	5,9	` `≃ 1,31 ्	\

Sur l'intervalle [1; 80]:

- f est continue;
- f strictement décroissante sur [1; 80];
- 5,9 est une valeur intermédiaire entre $f(1) = 105 \left(1 e^{-\frac{3}{40}}\right) \approx 7,59$ et $f(80) = \frac{105}{80} \left(1 e^{-6}\right) \approx 1,31$.

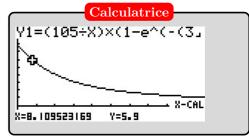
D'après le corollaire du théorème des valeurs intermédiaires il existe un réel unique $\alpha \in [1 ; 80]$, tel que $f(\alpha) = 5, 9$.

La calculatrice donne $f(8) \approx 5,92 > 5,9$ et $f(9) \approx 5,73 < 5,9$,

donc $8 < \alpha < 9$;

$$f(8,1) \approx 5,902 > 5,9$$
 et $f(8,2) \approx 5,882 < 5,9$, donc $8,1 < \alpha < 8,2$.

On a donc au dixième près $a \approx 8, 1$.



Partie C: détermination d'un traitement adéquat

1. a. Puisque $C(t) = \frac{105}{a} \left(1 - e^{-\frac{a}{80}t}\right)$, on a :

$$C(6) = \frac{105}{a} \left(1 - e^{-\frac{a}{80} \times 6} \right) = \frac{105}{a} \left(1 - e^{-\frac{3}{40}a} \right) = f(a), \text{ d'après la question précédente.}$$

b. On a vu dans la dernière question de la partie précédente que l'équation f(a) = 5, 9 admet une solution unique et que cette solution vaut environ 8, 1.

On prendra donc 8,1 comme valeur approchée de la clairance a de ce patient.

2. On obtient pour ce patient $C(t) = \frac{d}{8.1} \left(1 - e^{-\frac{a}{80}t}\right)$.

On a
$$\lim_{t \to +\infty} C(t) = \lim_{t \to +\infty} \frac{d}{8, 1} \left(1 - e^{-\frac{a}{80}t} \right) = \frac{d}{8, 1}.$$

On souhaite que
$$\frac{d}{8,1} = 15 \iff d = 15 \times 8, 1 = 121, 5.$$

Le débit sera donc de 121,5 micromole par heure pour avoir un plateau égal à 15 et donc un traitement efficace.

Exercice 2

1. La courbe représentative de la fonction f admet un point d'inflexion dont l'abscisse est a si et seulement si f'' s'annule et change de signe en a.

Graphiquement, ce n'est qu'au point C que la fonction s'annule et change de signe. On en déduit que le point d'abscisse 3 de la courbe représentative de la fonction f est un point d'inflexion.

Au point d'abscisse -1, f'' s'annule mais ne change pas de signe. Le point d'abscisse -1 de la courbe représenta-

d'abscisse -1 de la courbe représentative de f n'est donc pas un point d'inflexion.

Attention

2. Grâce au tableau de signes de la fonction f'', on déduit la convexité de la fonction f:

x	$-\infty$	-	-1		3	+	∞
f''(x)		_	0	_	0	+	
Convexité de f	f	est concave	f	est concave	f	est convexe	

f est concave sur $]-\infty$; 3] et convexe sur $[3; +\infty[$.

3. Seule la courbe 2 présente une fonction concave sur $]-\infty$; 3] et convexe sur $[3; +\infty[$.

Exercice 3

- 1. $f(10) f(0) = 10e^{-1} 30e^{-3} \approx 2{,}185$. Le dénivelé de cette nouvelle piste est donc de 2185 mètres.
- 2. Pour déterminer la difficulté de cette piste, il faut étudier les variations de la fonction dérivée f' sur l'intervalle (0; 10]. Pour cela on détermine f''(x) et on étudie son signe.

On obtient :

$$f'(x) = (-0, 4x + 4)e^{0,2x-3}$$
 et $f''(x) = (-0, 08x + 0, 4)e^{0,2x-3}$

A vous!

Vérifiez ces deux résultats..... cela ne devrait pas vous poser de problème !

En effet, le signe de f''(x) donne les variations de f'.

$$-0.08x + 0.4$$
 s'annule en $x = \frac{-0.4}{-0.08} = 5$.

Le tableau de variations de f'(x) est donc :

x	0		5		20
-0.08x + 0.4		+	0	_	
$e^{0,2x-3}$		+		+	
f''(x)		+	0	_	
f'(x)	$4e^{-3}$		2e ⁻²		· 0

$$f'(0) = 4e^{-3} \approx 0{,}199$$
 $f'(5) = 2e^{-2} \approx 0{,}271$ $f'(10) = 0.$

D'après le tableau de variation, la fonction f' admet sur l'intervalle [0; 10] un maximum au point d'abscisse 5. Ce maximum a pour valeur approchée 0,271. La pente maximum sera donc de 27,1%, ce qui correspond à une piste rouge.

