

MATHEMATIQUES
Dérivation, continuité et convexité : QCM (corrigé)

Exercice 1

1.
$$f(x) = (3x^4 - 2)^7$$
.

$$f = u^7 \text{ avec } u(x) = 3x^4 - 2.$$

u est dérivable sur \mathbb{R} , donc f aussi.

$$f' = 7u^6 \times u'.$$

Comme $u'(x) = 12x^3$, on obtient, pour tout réel x:

Si vous connaissez la formule de dérivation de $x \longmapsto x^7$ (c'est $x \mapsto 7x^6$), vous connaissez celle de u^7 (c'est $7u^6 \times u'$). C'est la même mais on multiplie par u'.

$$f'(x) = 7\underbrace{(3x^4 - 2)^6}_{(u(x))^6} \times \underbrace{12x^3}_{u'(x)}$$
$$= 84x^3(3x^4 - 2)^6$$

Réponse : c.

2.
$$f(x) = \sqrt{x^2 + 1}$$
.

$$f = \sqrt{u}$$
 avec $u(x) = x^2 + 1$.

La fonction u est dérivable sur \mathbb{R} et u(x) > 0 sur \mathbb{R} . Ainsi, f est dérivable sur \mathbb{R} .

$$f' = \frac{u'}{2\sqrt{u}}.$$

Ainsi, pour tout réel x:

Toujours rechercher la forme de la fonction pour calculer sa dérivée.

A savoir

Comme précédemment, si vous connaissez la formule de dérivation de $x \mapsto \sqrt{x}$ (c'est $x \mapsto \frac{1}{2\sqrt{x}}$), vous connaissez celle de \sqrt{u} (c'est $\frac{1}{2\sqrt{u}} \times u' = \frac{u'}{2\sqrt{u}}$). C'est la même mais on multiplie par u'.

$$f'(x) = \underbrace{\frac{\underbrace{x'(x)}}{2x}}_{2 \times \sqrt{x^2 + 1}}$$
$$= \underbrace{\frac{x}{\sqrt{x^2 + 1}}}$$

Réponse : c.

3. $f(x) = \frac{4}{(x^4+4)^4} = 4(x^4+4)^{-4}$.

Pensez-y

Il est parfois utile de transformer l'écriture de la fonction de départ pour en calculer sa dérivée. Ici, pensez aux puissances négatives : f est de la forme $4\times u^n$ avec $u(x)=x^4+4$ et n=-4. Ainsi, $f'=4\times (-4)u^{-4-1}\times u'=-16u^{-5}\times u'.$

Comme u est dérivable sur \mathbb{R} et ne s'annule pas sur \mathbb{R} , f est dérivable sur \mathbb{R} .

Pour tout réel x,

$$f'(x) = -16 \times \underbrace{(x^4 + 4)^{-5}}_{(u(x))^{-3}} \times \underbrace{4x^3}_{u'(x)}$$
$$= -64x^3(x^4 + 4)^{-5}$$
$$= \frac{-64x^3}{(x^4 + 4)^5}$$

Autre façon de voir les choses

$$f(x) = \frac{4}{(x^4 + 4)^4} = 4 \times \frac{1}{(x^4 + 4)^4}.$$

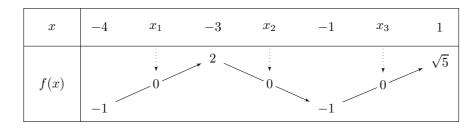
$$f \text{ est de la forme } 4 \times \frac{1}{u}. \text{ On a donc } f' = 4 \times \frac{-u'}{u^2}.$$

$$u(x) = (x^4 + 4)^4 \text{ et } u'(x) = 4(x^4 + 4)^3 \times 4x^3 = 16x^3(x^4 + 4)^3.$$

$$f'(x) = 4 \times \frac{-16x^3(x^4+4)^3}{((x^4+4)^4)^2}$$
$$= \frac{-64x^3(x^4+4)^3}{(x^4+4)^8}$$
$$= \frac{-64x^3}{(x^4+4)^5}$$

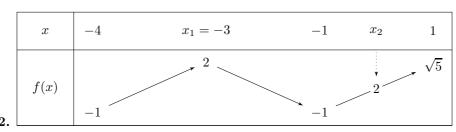
Réponse : c.

Exercice 2



1. L'équation f(x) = 0 admet 3 solutions x_1, x_2 et x_3 .

Réponse : d.



Comme $\sqrt{5} > 2$, l'équation f(x) = 2 admet 2 solutions x_1 et x_2 .

Réponse : c.

3. Tous les nombres compris entre 2 et $\sqrt{5}$ possibles. Ainsi, k peut être égal à 2,1 ou 2,004.

Réponse : c. et d

Exercice 3

- 1. f'(3) correspond graphiquement à la pente de la tangente T. Sa pente est (-1) donc f'(3) = 1. Réponse b.
- **2.** L'équation de de la tangente T est y = f'(3)(x-3) + f(3) avec f'(3) = -1 et f(3) = 2 d'où y = -(x-3) + 2 = -x + 5. Réponse c.
- 3. La tangente T traverse la courbe $\mathscr C$ au point A d'abscisse 3. On en déduit que $\mathscr C$ change de concavité au point A et donc que f''(3) = 0.

Réponse b.

4. Sur l'intervalle [3; 7], la courbe \mathscr{C} est convexe car au-dessus de ses tangentes donc, pour tout $x \in [3; 7], f''(x) \ge 0$. Réponse c.

3

5. La fonction f est de la forme $\frac{u}{v}$ admet donc comme fonction dérivée $f' = \frac{u'v - uv'}{v^2}$:

$$u(x) = x - 1$$

$$v(x) = e^{x-3}$$

$$u'(x) = 1$$

$$v'(x) = e^{x-3}$$

Pour tout
$$x \in [1; 7]: f'(x) = -$$

Pour tout
$$x \in [1; 7]: f'(x) = \frac{1 \times e^{x-3} - (x-1) \times e^{x-3}}{(e^{x-3})^2} = \frac{e^{x-3} \times (1 - (x-1))}{e^{x-3} \times e^{x-3}} = \frac{-x+2}{e^{x-3}}.$$

Réponse d.