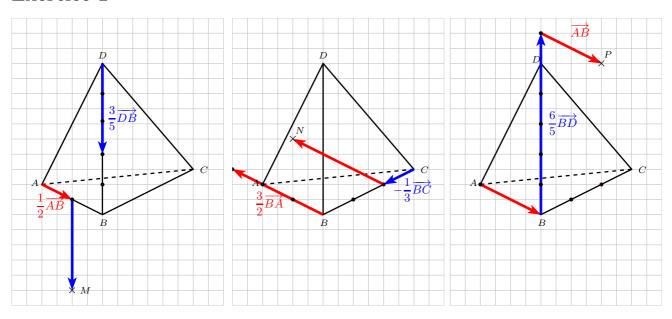


Exercice 1



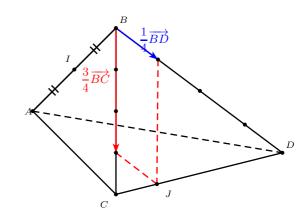
Exercice 2

- 1. A l'aide des graduations, on trouve : $\overrightarrow{BJ} = \frac{3}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BD}$.
- **2.** I est le milieu de [AB], donc $\overrightarrow{IB} = \frac{1}{2}\overrightarrow{AB}$.
- 3. On a : $\overrightarrow{IJ} = \overrightarrow{IB} + \overrightarrow{BJ}$ grâce à la relation de Chasles.

Ainsi,
$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{AB} + \frac{3}{4}\underbrace{\overrightarrow{BC}}_{=\overrightarrow{BA}+\overrightarrow{AC}} + \frac{1}{4}\underbrace{\overrightarrow{BD}}_{=\overrightarrow{BA}+\overrightarrow{AD}}$$

D'où:

$$\begin{split} \overrightarrow{IJ} &= \frac{1}{2}\overrightarrow{AB} + \frac{3}{4}(\overrightarrow{BA} + \overrightarrow{AC}) + \frac{1}{4}(\overrightarrow{BA} + \overrightarrow{AD}) \\ &= -\frac{1}{2}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AD}. \end{split}$$



Comment faire?

On cherche à exprimer \overrightarrow{IJ} en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} .

On "casse" les vecteurs \overrightarrow{BC} et \overrightarrow{BD} avec le point A et le tour est joué..

Exercice 3

D'après la relation de Chasles, $\overrightarrow{JG} = \overrightarrow{JB} + \overrightarrow{BG}$.

Or,
$$\overrightarrow{JB} = \frac{1}{2}\overrightarrow{HF}$$
 et $\overrightarrow{BG} = 2\overrightarrow{BI}$.

Alors, $\overrightarrow{JG} = \frac{1}{2}\overrightarrow{HF} + 2\overrightarrow{BI}$ et donc les vecteurs \overrightarrow{JG} , \overrightarrow{BI} et \overrightarrow{HF} sont bien coplanaires.

Vecteurs coplanaires

Pour montrer que trois vecteurs sont coplanaires, on exprime l'un des vecteurs comme combinaison linéaire des deux autres. En d'autres termes, on cherche (par exemple) a et b tels que $\overrightarrow{JG} = a\overrightarrow{HF} + b\overrightarrow{BI}$ sachant que \overrightarrow{HF} et \overrightarrow{BI} ne sont pas colinéaires.

Exercice 4

a. $\overrightarrow{BC} = \overrightarrow{EH}$ et $\overrightarrow{AC} = \overrightarrow{EG}$

Or les vecteurs \overrightarrow{EF} , \overrightarrow{EH} et \overrightarrow{EG} sont coplanaires car les points E, F, G et H appartiennent au plan, celui contenant la face EFGH du cube. \overrightarrow{EF} , \overrightarrow{BC} et \overrightarrow{AC} sont donc coplanaires.

Méthode

Trouver des vecteurs égaux avec des points qui sont dans le même plan.

b. $\overrightarrow{CG} = \overrightarrow{AE}$ et $\overrightarrow{DC} = \overrightarrow{AB}$ mais les vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} ne sont pas coplanaires car $D \notin (ABE)$. \overrightarrow{AD} , \overrightarrow{CG} et \overrightarrow{DC} ne sont donc pas coplanaires.

Exercice 5

1. a.
$$\overrightarrow{MG} = \overrightarrow{MD} + \overrightarrow{DG} = \frac{2}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{DI}$$
.

b.
$$\overrightarrow{MG} = \frac{2}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{DI} = \frac{2}{3}\left(\overrightarrow{AD} + \overrightarrow{DI}\right) = \frac{2}{3}\overrightarrow{AI}.$$

On en déduit que les vecteurs \overrightarrow{MG} et \overrightarrow{AI} sont colinéaires.

Donc que les droites (AI) et (MG) sont parallèles.

Réflexe

Pour montrer que les droites (AI) et (MG) sont parallèles, on montre que les vecteurs \overrightarrow{AI} et \overrightarrow{MG} sont colinéaires, c'est-à-dire qu'il existe un réel k tel que $\overrightarrow{MG} = k \times \overrightarrow{AI}$.

2. a. Démonstrations des égalités vectorielles.

$$\overrightarrow{BG} + \overrightarrow{CG} + \overrightarrow{DG} = \overrightarrow{0}$$

$$\overrightarrow{BBG} + \overrightarrow{CG} + \overrightarrow{DG} + \overrightarrow{DG} = \overrightarrow{0}$$

$$\overrightarrow{BA} + \overrightarrow{AG} + \overrightarrow{CA} + \overrightarrow{AG} + \overrightarrow{DA} + \overrightarrow{AG} = \overrightarrow{0}$$

$$3\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$$

$$\overrightarrow{AG} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD})$$

$$\overrightarrow{JG} = \overrightarrow{JA} + \overrightarrow{AG};$$

$$= -\frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{JG} = -\frac{1}{2}\overrightarrow{AB} + \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD})$$

$$= -\frac{1}{2}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AD}$$

$$= -\frac{1}{6}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AD}$$

Comment faire?

On cherche à exprimer \overrightarrow{AG} en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} . On utilise l'égalité $\overrightarrow{BG} + \overrightarrow{CG} + \overrightarrow{DG} = \vec{0}$ en cassant chaque vecteur avec le point A. b. Démonstration de l'égalité vectorielle.

$$\overrightarrow{JE} = \overrightarrow{JA} + \overrightarrow{AE}$$

$$= -\overrightarrow{AJ} + \overrightarrow{AC} + \overrightarrow{CE}$$

$$= -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$$

$$\mathbf{c.} \quad \overrightarrow{JG} = -\frac{1}{6}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AD} \quad = \frac{1}{3}\left(\underbrace{-\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}}_{\overrightarrow{JE}}\right) = \frac{1}{3}\overrightarrow{JE} \quad .$$

On en déduit que les vecteurs \overrightarrow{JG} et \overrightarrow{JE} sont colinéaires car il existe un réel k tel que $\overrightarrow{JG} = k\overrightarrow{JE}$. Donc que les points J, G et E sont alignés.

Exercice 6

1. a. Expression des vecteurs \overrightarrow{DJ} , \overrightarrow{DK} et \overrightarrow{DF} en fonction des vecteurs \overrightarrow{DA} , \overrightarrow{DB} et \overrightarrow{DC} .

$$\overrightarrow{DJ} = \overrightarrow{DA} + \overrightarrow{AJ}$$

$$= \overrightarrow{DA} + \frac{1}{2}\overrightarrow{AB}$$

$$= \overrightarrow{DA} + \frac{1}{2}\left(\overrightarrow{AD} + \overrightarrow{DB}\right)$$

$$= \frac{1}{2}\overrightarrow{DA} + \frac{1}{2}\overrightarrow{DB}$$

De même $\overrightarrow{DK} = \frac{1}{2}\overrightarrow{DA} + \frac{1}{2}\overrightarrow{DC}$.

$$\overrightarrow{DF} = \overrightarrow{DA} + \overrightarrow{AF}$$

$$= \overrightarrow{DA} + \overrightarrow{DE}$$

$$= \overrightarrow{DA} + \overrightarrow{DC} + \overrightarrow{CE}$$

$$= \overrightarrow{DA} + \overrightarrow{DC} + \frac{1}{2}\overrightarrow{BC}$$

$$= \overrightarrow{DA} + \overrightarrow{DC} + \frac{1}{2}\overrightarrow{BD} + \frac{1}{2}\overrightarrow{DC}$$

$$= \overrightarrow{DA} - \frac{1}{2}\overrightarrow{DB} + \frac{3}{2}\overrightarrow{DC}$$

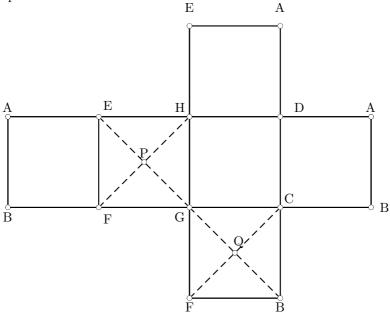
b. Déduction de l'égalité.

$$-\overrightarrow{DJ} + 3\overrightarrow{DK} = -\left(\frac{1}{2}\overrightarrow{DA} + \frac{1}{2}\overrightarrow{DB}\right) + 3\left(\frac{1}{2}\overrightarrow{DA} + \frac{1}{2}\overrightarrow{DC}\right)
= \overrightarrow{DA} - \frac{1}{2}\overrightarrow{DB} + \frac{3}{2}\overrightarrow{DC}
= \overrightarrow{DF}$$

2. Les vecteurs \overrightarrow{DJ} et \overrightarrow{DK} ne sont pas colinéaires car les points D, J et K ne sont pas alignés. On en déduit que les vecteurs \overrightarrow{DF} , \overrightarrow{DJ} et \overrightarrow{DK} sont coplanaires car il existe deux réels $\alpha = -1$ et $\beta = 3$ tels que $\overrightarrow{DF} = \alpha \overrightarrow{DJ} + \beta \overrightarrow{DK}$ et les vecteurs \overrightarrow{DJ} et \overrightarrow{DK} ne sont pas colinéaires. Par conséquent, les points D, J, K et F appartiennent au même plan.

Exercice 7

1. Un exemple de patron du cube :



2. EG est la diagonale d'un carré de côté 2 cm donc : $EG=2\sqrt{2}$ cm. $EP=\frac{1}{2}EG$ d'où : $EP=\sqrt{2}$ cm.

Ou avec Pythagore

La diagonale d'un carré de côté a vaut $a\sqrt{2}$. Pour obteni ce résultat, on peut utiliser le théorème de Pythagore dans le triangle rectangle EGF rectangle en F.

3. Le triangle AEP est rectangle en E.

4. On utilise le théorème de Pythagore dans le triangle AEP rectangle en E, on a : $AP^2=AE^2+EP^2=2^2+(\sqrt{2})^2=4+2=6$ donc : $AP=\sqrt{6}$ cm.

5. Dans le triangle équilatéral BEG, on a : P milieu de [EG], Q milieu de [BG] donc, d'après le théorème des milieux : $PQ = \frac{1}{2}EB$. De plus, EB est la diagonale d'un carré de côté 2 cm donc : $EB = 2\sqrt{2}$ et $PQ = \sqrt{2}$ cm.

Triangle BEG

Le triangle BEG est équilatéral car ses trois côtés ont la même longueur (diagonales de carrés de même dimension.

6. Le solide GEBF est une pyramide à 4 côtés à base triangulaire d'où : GEBF est un tétraèdre.

$$\mathcal{V} = \frac{\text{aire de la base} \times \text{hauteur}}{3} = \frac{\text{aire du triangle } EBF \times FG}{3}.$$
 Or, l'aire du triangle EBF vaut :
$$\frac{EF \times FB}{2} = \frac{2 \times 2}{2} = 2 \text{ cm}^2.$$
 D'où :
$$\mathcal{V} = \frac{2 \times 2}{3} \text{ cm}^3. \text{ Soit } \boxed{\mathcal{V} = \frac{4}{3} \text{ cm}^3. }$$