

MATHEMATIQUES Limites de fonctions : entraînement 3

Exercice 1

On note $\mathbb R$ l'ensemble des nombres réels et on considère la fonction f définie sur $\mathbb R$ par

$$f(x) = xe^{x-1} + 1.$$

On note \mathcal{C} sa courbe représentative dans un repère orthonormé.

Partie A: étude de la fonction

- 1. Déterminer la limite de f en $-\infty$. Que peut-on en déduire pour la courbe C?
- 2. Déterminer la limite de f en $+\infty$.
- **3.** On admet que f est dérivable sur \mathbb{R} , et on note f' sa fonction dérivée. Montrer que, pour tout réel x, $f'(x) = (x+1)e^{x-1}$.
- **4.** Étudier les variations de f sur \mathbb{R} et dresser son tableau de variation sur \mathbb{R} .

Partie B: recherche d'une tangente particulière

4. Donner alors une équation de la tangente recherchée.

Soit a un réel strictement positif. Le but de cette partie est de rechercher s'il existe une tangente à la courbe $\mathcal C$ au point d'abscisse a, qui passe par l'origine du repère.

- 1. On appelle T_a la tangente à C au point d'abscisse a. Donner une équation de T_a .
- 2. Démontrer qu'une tangente à $\mathcal C$ en un point d'abscisse a strictement positive passe par l'origine du repère si et seulement si a vérifie l'égalité

$$1 - a^2 e^{a-1} = 0.$$

3. Démontrer que 1 est l'unique solution sur l'intervalle]0; $+\infty[$ de l'équation :

$$1 - x^2 e^{x - 1} = 0.$$

					•••••	 	 		

Exercice 2

Partie A

Soit g la fonction définie et dérivable sur \mathbb{R} telle que, pour tout réel x,

$$g(x) = -2x^3 + x^2 - 1.$$

- 1. a. Étudier les variations de la fonction g.
 - **b.** Déterminer les limites de la fonction g en $-\infty$ et en $+\infty$.
- 2. L'équation g(x) = 0 admet une unique solution dans \mathbb{R} , notée α . Donner un encadrement de α à l'unité.
- **3.** En déduire le signe de g sur \mathbb{R} .

Partie B

Soit f la fonction définie et dérivable sur \mathbb{R} telle que, pour tout réel x,

$$f(x) = (1 + x + x^2 + x^3) e^{-2x+1}$$

On note f' la fonction dérivée de la fonction f sur \mathbb{R} .

- 1. Démontrer que $\lim_{x \to -\infty} f(x) = -\infty$.
- **2. a.** Démontrer que, pour tout x > 1,

$$1 < x < x^2 < x^3$$
.

b. En déduire que, pour x > 1,

$$0 < f(x) < 4x^3 e^{-2x+1}.$$

c. On admet que, pour tout entier naturel n, $\lim_{n \to \infty} x^n e^{-x} = 0$.

Vérifier que, pour tout réel x, $4x^3e^{-2x+1} = \frac{e}{2}(2x)^3e^{-2x}$ puis montrer que :

$$\lim_{x \to +\infty} 4x^3 e^{-2x+1} = 0.$$

- d. On note C_f la courbe représentative de f dans un repère orthonormé. En utilisant la question précédente, déterminer la limite de f en $+\infty$ et en donner une interprétation graphique.
- 3. Démontrer que, pour tout x de \mathbb{R} , $f'(x) = (-2x^3 + x^2 1) e^{-2x+1}$.
- 4. À l'aide des résultats de la partie A, déterminer les variations de f sur \mathbb{R} .