

MATHEMATIQUES

Fonction logarithme népérien : entraînement 1

Exercice 1 Partie A

Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = x - \ln\left(x^2 + 1\right).$$

- 1. Résoudre dans \mathbb{R} l'équation : f(x) = x.
- 2. Justifier tous les éléments du tableau de variations ci-dessous à l'exception de la limite de la fonction f en $+\infty$ que l'on admet.

x	$-\infty$	1		$+\infty$
f'(x)	+	0	+	
f(x)	$-\infty$			→ +∞

- **3.** Montrer que, pour tout réel x appartenant à [0; 1], f(x) appartient à [0; 1].
- 4. On considère l'algorithme suivant :

$$N \leftarrow 0$$

Tant que $N - \ln (N^2 + 1) < A$
 $N \leftarrow N + 1$
Fin Tant que

- **a.** Que fait cet algorithme?
- **b.** Quelle est la valeur de N à la fin de l'exécution de l'algorithme lorsque la valeur de A en début d'exécution est 100.

Partie B

Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = u_n - \ln(u_n^2 + 1)$.

- 1. Montrer par récurrence que, pour tout entier naturel n, u_n appartient à [0; 1].
- **2.** Étudier les variations de la suite (u_n) .
- **3.** Montrer que la suite (u_n) est convergente.
- 4. On note ℓ sa limite, et on admet que ℓ vérifie l'égalité $f(\ell) = \ell$. En déduire la valeur de ℓ .

	٠.	 	٠.	•	 	٠.	•	 ٠.	•	 ٠.	•	 ٠.	•	 ٠.	•		•		•	•	 •	 	•	٠.	•	٠.	 •	 ٠	 •	 •	 •	٠.	•		•	 •	 ٠.	 		•	 ٠.	•	٠.		•	٠.	 •	 ٠.	•	•
٠.																																																		
٠.		 		•	 	٠.	•	 ٠.	•	 		 	•	 	•		•		•	•		 		٠.	•	٠.		 •									 ٠.	 			 	•			•	٠.		 		•
٠.	٠.	 	٠.		 			 ٠.	•	 ٠.		 		 ٠.								 		٠.		٠.											 	 			 ٠.					٠.		 ٠.		•
٠.		 			 	٠.		 ٠.		 		 		 								 															 	 			 					٠.		 		•
		 	٠.		 	٠.		 ٠.		 		 		 								 										٠.		٠.			 	 			 ٠.					٠.		 		
		 	٠.		 	٠.		 ٠.		 		 		 								 										٠.		٠.			 	 			 ٠.					٠.		 		
٠.		 	٠.		 	٠.		 ٠.		 		 		 ٠.		٠.		٠.				 															 	 	٠.		 ٠.					٠.		 ٠.		
٠.		 	٠.		 	٠.		 ٠.		 		 		 ٠.		٠.		٠.				 															 	 	٠.		 ٠.					٠.		 ٠.		
٠.		 			 			 		 		 		 								 															 	 			 ٠.							 ٠.		

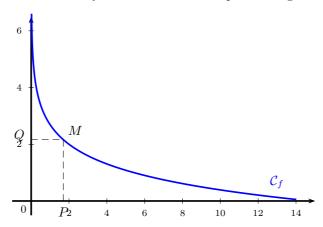
.....

Exercice 2

Soit f la fonction définie sur $]0\,;\,14]$ par

$$f(x) = 2 - \ln\left(\frac{x}{2}\right).$$

La courbe représentative \mathcal{C}_f de la fonction f est donnée dans le repère orthogonal d'origine O ci-dessous :



À tout point M appartenant à C_f on associe le point P projeté orthogonal de M sur l'axe des abscisses, et le point Q projeté orthogonal de M sur l'axe des ordonnées.

• L'aire du rectangle OPMQ est-elle constante quelle que soit la position du point M sur C_f ?

• L'aire du rectangle OPMQ peut-elle être maximale? Si oui, préciser les coordonnées du point M correspondant. Justifier les réponses.

 • • • • • •