MATHEMATIQUES Suites. Limites de suites : entraînement savoir-faire

Chapitre 3 : Suites. Limites de suites.	Evaluation
30. Déterminer une limite en utilisant la définition.	•• • • •
31. Étudier la limite d'une somme, d'un produit et d'un quotient.	•• • • •
32. Déterminer une limite par minoration, majoration, encadrement.	•• • • • ••
33. Connaître et utiliser le théorème de convergence des suites monotones.	•• • • • ••
34. Déterminer la limite éventuelle d'une suite géométrique.	•• • • • ••
35. Déterminer un seuil à l'aide d'un algorithme.	•• • • • ••

E

Exercice 1 30
Soit (u_n) la suite définie, pour tout entier naturel n , par $u_n = 3n + 6$. 1. A partir de quel rang a-t-on $u_n > 10000$?
2. A l'aide de la définition, montrer que (u_n) diverge vers $+\infty$.
Exercice 2 30
Montrer que la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \sqrt{n}$ a pour limite $+\infty$ en $+\infty$.
••••••••••••••••••••••••••••••
Exercice 3 30
Soit I un intervalle ouvert contenant 1 : un tel intervalle est de la forme $]1-r,1+r'[$ avec $r>0$ et $r'>0$.
Montrer que l'on a $1-r < \frac{n+1}{n} < 1+r'$, c'est-à-dire $1-r-\frac{n+1}{n} < 0$ et $1+r'-\frac{n+1}{n} > 0$, à partir d'un certain rang.
En déduire $\lim_{n \to +\infty} \frac{n+1}{n}$.
••••••••••••••••••••••••••••••

1

Exercice 4 31

- 1. Déterminer $\lim_{n \to +\infty} 4n^2 \frac{1}{n} + 3^n$.
- $2. \lim_{n \to +\infty} -2n^2 + n.$
- 3. $\lim_{n \to +\infty} \frac{2n^3 + 3}{5n^4 + 8n^2 n}.$

• • •	• • •	 • •	• •		٠.	•	•	• •	٠.	٠.	٠.	•	٠.	٠.	٠	• •	٠.	• •	٠.	•	٠.	•	• •	 •	• •	٠	٠.	•	•	•	•	• •	•	• •	٠	 •	 ٠.	•	٠.	•	 ٠.	•	• •	• •	٠.	•	 ٠.	•	• •	٠.	٠.	•	٠.	٠.	•	٠.	٠.	• •
	• • •	 		٠.	٠.	•	•		٠.	٠.	٠.	•	٠.	٠.	•		٠.		٠.	•	٠.	•	٠.	 •	٠.	•	٠.	•		•	•		•			 •	 ٠.	•	٠.	•	 ٠.	•			٠.	•	 ٠.	•		٠.	٠.	•	٠.	٠.	•		٠.	٠.
	• • •	 			٠.	•					٠.											•		 •			٠.	•		•			•			 •	 				 				٠.		 				٠.						٠.	٠.
		 			٠.	•				٠.	٠.			٠.					٠.	•	٠.			 •		•		•		•			•				 ٠.	•	٠.		 ٠.				٠.		 				٠.	•		٠.			٠.	٠.
		 			٠.	•				٠.	٠.			٠.					٠.	•	٠.			 •		•		•		•			•				 ٠.	•	٠.		 ٠.				٠.		 				٠.	•		٠.			٠.	٠.
		 			٠.	•				٠.	٠.			٠.					٠.	•	٠.			 •		•		•		•			•				 ٠.	•	٠.		 ٠.				٠.		 				٠.	•		٠.			٠.	
		 			٠.	•			٠.	٠.	٠.			٠.					٠.	•	٠.		٠.	 •		•	٠.	•		•			•				 ٠.	•	٠.		 ٠.				٠.		 ٠.			٠.	٠.			٠.			٠.	٠.
		 			٠.				٠.	٠.	٠.			٠.					٠.																		 ٠.		٠.		 ٠.						 			٠.	٠.			٠.			٠.	٠.
		 			٠.				٠.	٠.	٠.			٠.					٠.								٠.										 ٠.		٠.		 ٠.						 			٠.	٠.			٠.			٠.	٠.
		 			٠.				٠.	٠.	٠.			٠.					٠.								٠.										 ٠.		٠.		 ٠.						 			٠.	٠.			٠.			٠.	٠.
		 			٠.	•			٠.	٠.	٠.			٠.					٠.	•	٠.		٠.	 •		•	٠.	•		•			•				 ٠.	•	٠.		 ٠.				٠.		 ٠.			٠.	٠.			٠.			٠.	٠.
		 			٠.	•			٠.	٠.	٠.			٠.					٠.	•	٠.		٠.	 •		•	٠.	•		•			•				 ٠.	•	٠.		 ٠.				٠.		 ٠.			٠.	٠.			٠.			٠.	٠.
		 			٠.	•				٠.	٠.			٠.					٠.	•	٠.			 •		•		•		•			•				 ٠.	•	٠.		 ٠.				٠.		 				٠.	•		٠.			٠.	
		 			٠.	•			٠.	٠.	٠.			٠.					٠.	•	٠.		٠.	 •		•	٠.	•		•			•				 ٠.	•	٠.		 ٠.				٠.		 ٠.			٠.	٠.			٠.			٠.	٠.
		 			٠.	•				٠.	٠.			٠.					٠.	•	٠.			 •		•		•		•			•				 ٠.	•	٠.		 ٠.				٠.		 				٠.	•		٠.			٠.	
		 			٠.	•			٠.	٠.	٠.			٠.					٠.	•	٠.		٠.	 •		•	٠.	•		•			•				 ٠.	•	٠.		 ٠.				٠.		 ٠.			٠.	٠.			٠.			٠.	٠.
		 			٠.	•			٠.	٠.	٠.			٠.					٠.	•	٠.		٠.	 •		•	٠.	•		•			•				 ٠.	•	٠.		 ٠.				٠.		 ٠.			٠.	٠.			٠.			٠.	٠.
		 			٠.	•			٠.	٠.	٠.			٠.					٠.		٠.	•	٠.	 •		•	٠.	•		•			•				 ٠.		٠.	•	 ٠.				٠.		 ٠.			٠.	٠.			٠.			٠.	٠.
		 				•				٠.	٠.																										 				 				٠.		 										٠.	

Exercice 5 32

Déterminer en utilisant les théorèmes de comparaison et des gendarmes :

- 1. $\lim_{n \to +\infty} n^2 (-1)^n$.
- $2. \lim_{n \to +\infty} \frac{\sin\left(n^2\right)}{n}.$

Exercice	6	33	

Soit la suite (u_i)	$_n)$ définie p	$ar u_0 = 4 et$	$u_{n+1} = \sqrt{u_n}$	pour tout $n \in \mathbb{N}$.			
Montrer par ré	currence qu	e $1 \leqslant u_{n+1}$	$\leq u_n$ pour tou	t $n \in \mathbb{N}$ et en dédui	re que (u_n)	est convergente.	
Exercice	7 34						
Déterminer, lor	squ'elle exis	ste, la limite	e des suites sui	vantes:			
$u_n = 1$	$-\left(\frac{3}{4}\right)^n$	$v_n = \frac{1}{3+1}$	$\frac{4}{2 \times (-0,8)^n}$			$t_n = 2 \times (-1,3)^n$	
				• • • • • • • • • • • • • • • • • • • •			• • • • • • •
					• • • • • • • • • • • •		

Exercice 8 35

On considère l'algorithme ci-dessous :

$$U \longleftarrow 80$$

$$N \longleftarrow 0$$

Tant que $U\leqslant 114$:

$$N \longleftarrow N+1$$

$$U \longleftarrow 0.75U + 30$$

Fin Tant que

$$N \longleftarrow 2015 + N$$

1. Compléter le tableau suivant autant que nécessaire en arrondissant les résultats au millième près.

N	0					
U	80					
$U \leqslant 114$	Vrai					

2.	Quelle	valeur se	trouve	dans la	variable Λ	/ à la	fin de	l'exécution	de l'algorithme?
	of arciic	varour be	or our c	addin id	VOLIDO I	CC ICC	IIII GO	1 0210001011	ac i aigoirmine.

.....